
Oxford University Computing Services

Programming in C++

Languages l9.3/1

Typographical Conventions

Listed below are the typographical conventions used in this guide.

– Example C++ code and commands to be typed by the user are in non-bold characters in typewriter
font.

– Items where the user has to supply a name or number are given in lower-case italic characters in
typewriter font.

– Sections marked with a ‡ describe features that are also available in ANSI C.

Acknowledgements

I would like to thank Francis Cameron and Adrian Cox, who have both acted as demonstrators for the OUCS
C++ course, for their many suggestions and ideas on improving these notes and the OUCS C++ course.

April 1994 OUCS

Programming in C++ l9.3/1

Contents

1 C++ as a Better C 1
1.1 Comment to End of Line 1
1.2 Enumeration and Structure Names 1
1.3 Declarations within Blocks 2
1.4 Scope Qualifier 2
1.5 const ‡ 2
1.6 Explicit Type Conversion 3
1.7 Function Definitions and Declarations ‡ 4
1.8 Overloading of Functions and Operators 5
1.9 Default Values for Function Parameters 6
1.10 Name Mangling 7
1.11 Functions with a Variable Number of Parameters ‡ 7
1.12 Inline Functions 9
1.13 new and delete Operators 10
1.14 Void Type ‡ 11
1.15 Stream Library 12
1.16 References 13

1.16.1 Pointers vs. References 14
1.16.2 Reference Parameters 14
1.16.3 Functions Returning References 15
1.16.4 References and const 15

1.17 Exercises 16

2 Object Oriented Programming 16
2.1 Rationale 16
2.2 Classes 17

2.2.1 The Class Construct 17
2.2.2 Structures 19
2.2.3 Objects 19
2.2.4 Constructors and Destructors 19
2.2.5 Member Functions 20
2.2.6 Operators as Member Functions 21
2.2.7 Default Member Functions 23
2.2.8 Access Specifiers 23
2.2.9 Exercises 24
2.2.10 Methods and Messages 24
2.2.11 Order of Evaluation 25
2.2.12 The Implicit Argument – this 25
2.2.13 const members 26
2.2.14 Friends 28
2.2.15 Operators — Member Function vs Global Function 28
2.2.16 static Class Data 30
2.2.17 Conversions 31
2.2.18 Class Objects as Members 32
2.2.19 An Example Class — Complex Numbers 34

OUCS April 1994

2.2.20 Exercises 36
2.3 Inheritance and Polymorphism 36

2.3.1 Derived Classes 36
2.3.2 Deriving a New Class 37
2.3.3 Derived Classes; Constructors and Destructors 37
2.3.4 Virtual Functions and Polymorphism 38

2.3.4.1 Polymorphism 38
2.3.4.2 Virtual Functions 38
2.3.4.3 Pure Virtual Functions and Abstract Base Classes 40
2.3.4.4 Virtual Destructors 40

2.3.5 Exercises 40

3 Templates 41

4 Exceptions 43

5 Separate Compilation 44

6 C++ Versions 47

7 Bibliography 47

References

[1] The C++ Programming Language, Bjarne Stroustrup, Addison Wesley, Second Edition 1992

Author: Stephen Gough

Revision History:

l9.3/1 April 1994 Original publication

Oxford University Computing Services 1994©

Although formal copyright is reserved, members of academic institutions
may republish the material in this document subject to due
acknowledgement of the source.

C makes it easy for you to shoot yourself in the foot. C++ makes it harder, but when you do it blows your
whole leg away!

Bjarne Stroustrup

l9.3/1 Programming in C++

April 1994 OUCS1

1 C++ as a Better C
Features marked with a ‡ are available in ANSI C.

1.1 Comment to End of Line

a += 6; // this is a comment

The new style comments are useful as it is possible to comment out code containing
comments, e.g.

// a += 6 // this is a comment
// b += 7;

With C style comments (which are still available in C++) problems occur:

/*
a += 6; /* this is a comment */
b += 7;
*/

The close comment symbol in the original comment ends the new comment, leaving code
uncommented and a */ symbol which will cause the compiler distress.

1.2 Enumeration and Structure Names

The name of an enumeration or structure is a type name. The keyword enum or struct is
not required in subsequent use of the type, e.g. in variable declarations or in other type
constructors.

enum primary_colour { red, green, blue };
// primary_colour is a enumerated type

primary_colour colour;
// colour can only be red,
// green or blue

enum primary_colour colour2;
// old fashioned declaration

struct complex { double re, im; } fred;
// complex is a structured type
// fred is a variable of type complex

complex harry; // harry is a variable of
// type complex

struct complex jim; // old fashioned declaration

Programming in C++ l9.3/1

OUCS April 19942

1.3 Declarations within Blocks

C++ permits declarations of variables and types anywhere within a block, not just at the
start of a block. Variables can be declared closer to their point of use, reducing the risk of
forgetting the type or misspelling the name. The ability to declare and initialise variables
after statements also means that more complication structures are not initialised twice. For
example, an array will be initialised to contain zeros without an initialiser, if the data is not
known until later, then the array will be filled twice. It is more efficient to declare and
initialise once the data required becomes available.

1.4 Scope Qualifier

#include <stdio.h>

int i = 0;

int main()
{

for (int i = 0; i < 10; i++)
printf("%5d%5d\n", i, ::i);

return 0;
}

The program produces the following output:

0 0
 1 0
 2 0
 .
 .

9 0

i refers to the local variable, ::i refers to the global variable.

1.5 const ‡

The keyword const can be used to freeze the value of an object. const objects will be
initialised (as their value cannot otherwise be set!). const can also be used as a type
qualifier on function parameters to prevent accidental modification of the parameter within
the function.

l9.3/1 Programming in C++

April 1994 OUCS3

void fred(const int x);

int main()
{

const int i = 15;
int j = 16;

i = 5; // illegal

fred(j);

return 0;
}

void fred(const int x)
{

x = 6; // illegal
}

When applying const to a pointer we can indicate that the pointer should be unmodifiable,
or that the data pointed to should remain constant. The alternatives are given below:

const char *ptr1 = "Hi"; // data pointed to is const
char *const ptr2 = "Hi"; // pointer is constant
const char *const ptr3 = "Hi"; // both pointer and data

// are constants

const objects can be used in array declarations, they cannot in C. The following is legal
C++, but illegal C:

const int size = 10;
float vals[size];

1.6 Explicit Type Conversion

Used to convert a value of one type to a value of another. Can be used as a replacement for
old style cast operators.

int main()
{

int i;
float f;

i = (float) f * 6;
// old style cast to float
// - does cast refer to (f * 6) or just to f?

i = float (f * 6);
// new style cast to float
// - clear what is being converted

return 0;
}

Programming in C++ l9.3/1

OUCS April 19944

Type conversions of this form can only be used when the type has a simple single name, that
is

str = char * (ptr);

is not legal, but if a new type name is created with typedef, then the conversion will be
legal C++.

typedef char *string;

str = string(ptr);

1.7 Function Definitions and Declarations ‡

C++ uses the same format of function definition as defined in the ANSI C standard. The
types of the parameters are specified within the round brackets following the function name.
C++ function declarations are used to provide checking of the return type and parameters
for a function that has not yet been defined. C++ declarations are the same as ANSI C
prototypes.

The advantage of using function declarations and the new style definitions is that C++ will
check that the type of the actual parameters are sensible — not necessarily the same. Either
the types must be the same, or all the applicable standard and user defined type conversions
are tried to see if a match can be found.

Some C++ implementations will not accept the old K&R declaration style at all.

l9.3/1 Programming in C++

April 1994 OUCS5

double minimum(double a, double b)
// C++ and ANSI C function definition
{

return a < b ? a : b;
}

double maximum(a, b)
// old fashioned K&R format
double a, b;
{

return a > b ? a : b;
}

int main()
{

minimum(1, 2);
// correct usage minimum(1.0, 2.0);
// C++ will convert 1 to 1.0 and 2 to 2.0

minimum("hi", "there");
// non-sensical, C++ will complain

maximum(1, 2);
// call traditional C function
// no errors - wrong answer

maximum("hi", "there");
// again no complaints - strange results

}

Note that an ANSI C function declaration (where information about the parameters is
omitted) is interpreted by C++ as a declaration of a function that takes no parameters. For
example, the following declaration states that fred returns an int and can take any
number of parameters of any type in ANSI C, whilst in C++ it declares a function that
returns int and takes no parameters in C++.

int fred();

1.8 Overloading of Functions and Operators

Several different functions can be given the same name. C++ will choose one of the
functions at compile time (but see 2.3.4.2 Virtual Functions), given the type and number
of parameters in the function call.

Programming in C++ l9.3/1

OUCS April 19946

The following print functions print an int, a string and an array of int:

#include <stdio.h>
#include <string.h>

void print(int i)
// print an integer
{

printf("%d\n", i);
}

void print(char *str)
// print a string
{

printf("%s\n", str);
}

void print(int a[], int elem)
// print an array of integers
{

for (int i = 0; i < elem; i++) printf("%d\n", a[i]);
}

int main()
{

int i = 6;
char *str = "hello";
int vals[] = { 1, 2, 3, 4 };

print(i); // call print(int)
print(str); // call print(char *)
print(vals,sizeof(vals)/sizeof(int));

// call print(int [], int)
return 0;

}

It should be noted that there are better ways of handling printing of user defined types in
C++ (namely operator<<, see section 1.15 and exercise 2.2.20...(2)).

1.9 Default Values for Function Parameters

Functions can be called with fewer actual parameters than formal parameters. The
unspecified parameters are given default values.

void fred(int one, float two = 1.23, char three = 'c')
{
}

The arguments with default values must be the last parameters in the parameter list.

l9.3/1 Programming in C++

April 1994 OUCS7

In this example, fred can then be called with 1, 2 or 3 parameters, e.g.

fred(6,7.2,'z');
fred(6,7.2);
fred(6);

When declaring functions that take parameters with default values, subsequent declarations
cannot specify the default values already specified in earlier declarations, but they can add
new default values. When declaring a function before use, specify the default values in the
first declaration, e.g.

void fred(int one, float two = 1.23, char three = 'c');

int main()
{

fred(6, 7.2);
}

void fred(int one, float two, char three)
{
}

1.10 Name Mangling

As it is possible to overload functions (e.g. in the example above there are three print
functions) and as it is possible to use C++ with your existing linker, there must be some
mechanism to generate a unique name for each overloaded function. Each function's name,
number and type of parameters are combined to produce a unique name. This process is
called name mangling. Occasionally name mangling is not required, one example is linking
with C code. To turn the mangling off, a linkage specification can be used when declaring
the C routines that will be used:

extern "C" void fred(int);

fred(int) will now no longer be mangled. If the linkage specification is not used, and
fred is declared as void fred(int) an error such as Undefined: fred_Fi will be
produced when linking. fred_Fi is the mangled name of void fred(int)

When a group of C functions need to be declared, they can be placed in a linkage
specification block:

extern "C" {
int printf(char *fmt ...);
int scanf(char *fmt ...);

}

Programming in C++ l9.3/1

 But you shouldn't! Use operator<< instead (see section 1.15 and exercise1

2.2.20...(2)).

OUCS April 19948

1.11 Functions with a Variable Number of Parameters ‡

Functions can be written which can take any number of parameters. It is now possible to
write your own equivalent of printf . To write functions with a variable number of1

parameters it is necessary to use the macros, va_start and va_end, which are defined in
the header file, stdarg.h. Individual unnamed parameters can be obtained with the
va_arg macro, or the vprintf range of print routines can be used to print a list of
unnamed parameters.

The first of the following examples uses vfprintf to print the unnamed parameters, the
second extracts the unnamed parameters one by one using va_arg.

#include <stdio.h> // for fprintf
#include <stdlib.h> // for exit
#include <stdarg.h> // for variable num of args macros

void error(char *format ...)
{

va_list args;

va_start(args, format);
// make args point to first unnamed parameter

fprintf(stderr, "ERROR: ");
// print start of error message

vfprintf(stderr, format, args);
// print all unnamed arguments

fprintf(stderr, "\n");
// move onto newline

va_end(args);
// tidy up

exit(1);
// return to OS with exit status of 1
}

int main()
{

int i = -1;

error("invalid value %d encountered", i);
return 0;

}

l9.3/1 Programming in C++

April 1994 OUCS9

#include <stdio.h>
#include <stdarg.h>

void sum(char *message ...)
{

int total = 0;
va_list args;
int arg;

va_start(args, message);
while ((arg = va_arg(args, int)) != 0)

total += arg;
printf(message, total);
va_end(args);

}

int main()
{

sum("The total of 1+2+3+4 is %d\n", 1, 2, 3, 4, 0);
return 0;

}

We must make sure that the function knows which is the last actual parameter, otherwise
we may try to remove too many parameters from the stack. In the first example, we used the
vfprintf function, which is the printf function to use in conjunction with a variable
number of arguments. Like printf, the number of conversion characters must match the
number of extra parameters. In the second example a special trailing value is used to
indicate the last parameter.

In ANSI C the parameter list is written

func(named parameters, ...)

That is a comma precedes the ellipsis (...).

1.12 Inline Functions

Function definitions that are qualified with the inline keyword act like macros, that is, the
code is inserted at each invocation of the function. However, unlike preprocessor macros,
inline functions are much safer. Copies of the parameters are still taken and type
checking of the parameters is performed. Compilers are at liberty to ignore an inline
instruction, and many will do so for functions that are too long or complicated (each
compiler will have its own idea about what this means!). Also, if the address of the function
is ever used (perhaps assigned to a pointer), then the compiler will have to generate a normal
function (it is difficult to take the address of a function that does not exist!), though this may
be in addition to the insertion of the code wherever the function is called.

Programming in C++ l9.3/1

OUCS April 199410

inline int strlen(char *str)
{

int i = 0;

while (str++ != '\0')
i++;

return i;
}

1.13 new and delete Operators

new and delete are used for dynamic allocation of memory space. They have a major
advantage over malloc and free: constructors and destructors (see 2.2.4) for the objects
created or destroyed will be called.

There are two forms of new and delete, depending on whether a single object or an array
of objects is required:

pf = new float; for a single float
pf = new float [num]; for an array of floats

You should use the corresponding form of delete when destroying the objects created with
new, i.e.

delete pf; for a single object
delete [] pf; for an array of objects

This will ensure that the destructor is called for each object in the array.

new returns 0 (NULL) on failure.

l9.3/1 Programming in C++

April 1994 OUCS11

The following example program illustrates the use of new and delete.

#include <stdio.h>

int main()
{

int num_chars;
char *name;

printf("how many characters in your string? ");
scanf("%d",&num_chars);

name = new char [num_chars + 1];
// allocate enough room for num_chars characters
// + 1 for the '\0'

if (name != NULL) {
// do something with name

delete [] name;
// remove name from the heap

}

return 0;
}

It is possible to set up a function to handle out of memory errors when using new; the
function set_new_handler (declared in new.h) is used to register the handler:

#include <iostream.h>
#include <new.h>
#include <stdlib.h>
#include <limits.h>

void newError()
{

fprintf(stderr,"new failed: out of memory\n");
exit(1);

}

int main()
{

char *ptr;

set_new_handler(newError);
ptr = new char [ULONG_MAX];
return 0;

}

This program sets up a handler that prints an error message and aborts the program if the
heap is full.

Programming in C++ l9.3/1

OUCS April 199412

1.14 Void Type ‡

Functions can be declared as returning void, meaning they do not return a value.

void can also be used in the parameter list of a function. C++ differs from ANSI C on the
meaning of a function declaration with a null argument list, e.g. fred();, in ANSI C this
means that the function can take any number of arguments, in C++ it means that this
function does not take any parameters, i.e. C++'s fred(); is equivalent to ANSI C's
fred(void);. C++ accepts fred(void); for compatibility with ANSI C.

The generic pointer type is void * as it is in ANSI C, but again there is a difference. C++
will allow the assignment of any pointer to a void * variable or parameter, but the reverse
always requires a cast. In ANSI C, both assignments are permitted without a cast.

void fred();
// A function that takes no parameters and
// does not return a value.

void *harry();
// A function that takes no parameters and
// returns a pointer to void

void *jim(void *);
// A function that takes a void * parameter
// and returns a pointer to void

int main()
{

int i;
int *ptr2int;
float *ptr2float;

i = fred();
// illegal, fred does not return a value

fred(i);
// illegal, fred takes no parameters

ptr2int = harry();
// illegal, cast required for (void *) to (int *)

ptr2int = (int *)harry();
ptr2float = (float *)harry();

// OK, casts used

ptr2int = (int *)jim(ptr2float);
// OK, no cast needed for pointer to anything to

// void *

return 0;
}

l9.3/1 Programming in C++

April 1994 OUCS13

1.15 Stream Library

The stream library is used for a common interface to input and output routines across
built-in types and your own types.

There are three streams available (cin, cout and cerr for standard input, standard
output and standard error streams respectively) and they are used in the following way:

#include <iostream.h>

int main()
{

int i = 45;
float f = 34.678;

cout << i; // print i
cout << f; // print f
cout << "\nEnter an integer: ";

// print a string
cin >> i; // read an integer
cout << i << f; // print i and f

return 0;
}

A range of manipulators exist to allow formatting of output. [Remember that if all else
fails, printf is still there!] Standard manipulators include:

oct use octal
dec use decimal
hex use hexadecimal
endl newline ('\n')
ends end of string ('\0')
flush flush stream
ws skip white space
setbase(int) use base specified
setfill(int) set fill character
setprecision(int) set number of digits printed
setw(int) set field width

Declarations for these manipulators are in iomanip.h. For example:

cout << setw(8) << 1 << setw(8) << setfill('#') << 2
 << endl;
cout << hex << 123 << ' ' << oct << 123 << endl;

prints:

1#######2
7b 173

Programming in C++ l9.3/1

OUCS April 199414

The setw manipulator applies only to the next numeric or string value printed, hence the
need for two calls to setw above. The setfill manipulator modifies the state of the
stream, and will apply to all subsequent output on that stream.

1.16 References

1.16.1 Pointers vs. References

Pointers in C++ operate in precisely the same way as pointers in C. To declare a pointer, you
must state the type of the object that the pointer will point to, e.g. to declare a variable i as
being a pointer to int:

int *i;

The pointer is then used in one of two ways: by making the pointer point to some already
existing data; or by making the pointer point to some currently unused memory and then
storing data via the pointer. Examples of both methods are given below:

int i = 10;
int *ptr2int;

ptr2int = &i; // make ptr2int point to i
*ptr2int = 20; // change the value of i

ptr2int = new int; // ask for enough memory to
// store an integer

cin >> *ptr2int; // store data in this newly
// allocated memory

The * and & operators are more or less the opposites of each other. & is used to generate a
pointer, and * is used to follow a pointer to find what is at the other end. The opposite
nature of the two is shown by the fact that *&i is the same as i (given the declarations
above), but &*i is not legal as you are attempting to treat i as a pointer.

References are ways of introducing a new name for an existing object. References must be
initialised to refer to some existing object, and this cannot be changed! For example,
consider the code below:

int i = 1, j = 2;
int& k = i; // k refers to i, i.e. k

// is an alias for i

cout << setw(2) << i << j << k; // prints " 1 2 1"
k = j; // assigns 2 to i
cout << setw(2) << i << j << k; // prints " 2 2 2"

Note that the assignment to k did not make k refer to j, instead it modified the value of the
object that k referred to.

l9.3/1 Programming in C++

April 1994 OUCS15

1.16.2 Reference Parameters

References are also sometimes used as parameters to functions. In this case, the
initialisation of the reference takes place when the actual parameters are copied into the
formal parameters, e.g.

#include <iostream.h>
#include <iomanip.h>

void fred(int i, int& j)
{

i = 3; // assign to a local copy of the
// first argument

j = 4; // modify variable in caller's scope
}

int main()
{

int a = 1, b = 2;

cout << setw(2) << a << b; // prints "1 2"
fred(a,b);
cout << setw(2) << a << b; // prints "1 4"
return 0;

}

Needless to say, references are actually implemented using pointers!

1.16.3 Functions Returning References

Functions can return a reference to an object, but make sure that the reference is not to a
local object that will be destroyed when the function terminates.

The following function returns a reference to a character within the string parameter.

#include <iostream.h>

char& strchr(char *str, char c)
{

while (*str != '\0' && *str != c)
str++;

return *str;
}

int main()
{

char s[] = "hello world";

strchr(s,'l') = 'z';
cout << s;
return 0;

}

The program should print hezlo world.

Programming in C++ l9.3/1

OUCS April 199416

1.16.4 References and const

const references can be initialised with non-const objects; the object referred to will not
be modifiable through the reference. Plain references cannot be initialised with a const
object, as that would allow a const object to be changed.

{
int i = 1;
const int j = 2;
const int& k = i; // OK
int& l = j; // illegal

k = 3; // illegal, even though reference is
// to i which is not const

1.17 Exercises

(1) Write a function that will print an unsigned int in any given number base. If the base
is omitted then the base should default to 10. To print the number use the following
recursive algorithm (n is the number to print and base is the base):

if (n > 0) {
print(n / base, base);
cout << n % base;

}

Of course this will only work for base 10.

(2) Write a function that will swap its two double parameters. Use reference parameters. Test
with the following program:

#include <iostream.h>
#include <iomanip.h>

int main()
{

double x = 1.2, y = 1.3;

cout << x << ' ' << y << endl;
swap(x,y);
cout << x << ' ' << y << endl;
return 0;

}

l9.3/1 Programming in C++

April 1994 OUCS17

2 Object Oriented Programming
2.1 Rationale

C++ started life as “C with classes”. A class contains the data and the operations needed
on the data, and so the class defines the interface to the data. Classes permit the definition
of abstract data types (ADTs) in a similar way to the packages of ADA and the modules
of Modula-2. If the interface to the object is well designed then all the details will be within
the class, making it easier to identify code that is accessing the data incorrectly. This is part
of way to an object oriented programming language (OOPL).

For a programming language to fully support OOP it should also support inheritance and
polymorphism.

inheritance defining a class in terms of another; adding features to the existing
class

polymorphism applying the same operation to objects of different classes (but each
must be in the same family, derived from a common base class), the
behaviour will be different, even though the operation is the same

The classic example of inheritance and polymorphism is that of shapes in a graphics library.
A base class, shape, stores the colour and location, and new classes are derived from the
base class inheriting the common features of all shapes. If any shape is asked to draw itself,
the behaviour will be different (circles and squares look different) even though they are
undergoing the same operation; this is polymorphism.

Much work is being done in the fields of object oriented analysis (OOA) and object
oriented design (OOD), but unfortunately this is beyond the scope of this course (and
possibly beyond the capabilities of the author!). However, the following rules of thumb for
object oriented programming in C++ from Stroustrup [1] will suffice:

– If you can think of “it” as a separate idea, make it a class (see 2.2).
– If you can think of “it” as a separate entity, make it an object of some class (see 2.2.3).
– If two classes have something significant in common, make that commonality a base

class (see 2.3.1).
– If a class is a container of objects, make it a template (see 3).

Deriving a class from another (inheritance) and including a class object within another are
often referred to as is-a and has-a relationships. In C++:

is-a publicly derived from another class
has-a implemented in terms of; either has a class object as a member or is privately

derived from another class

For example, a Ford Mondeo is-a car, and a car has-a engine (sorry about the grammar!).
Therefore, engine could be a member of car, and FordMondeo could be publicly derived
from car.

Programming in C++ l9.3/1

OUCS April 199418

2.2 Classes

2.2.1 The Class Construct

A class definition gives the data and the operations that apply to that data. The data can be
private, public or protected (see 2.2.8) enabling data hiding and construction of Abstract
Data Types (ADTs).

l9.3/1 Programming in C++

April 1994 OUCS19

An example of a simple class is given below:

#include <iostream.h>
#include <string.h>

class string {
char *str;

public:
string() // default constructor, takes

// no parameters
{

str = NULL;
}

string(const char *s)
// constructor with `char *' argument

{
str = new char [strlen(s) + 1];
strcpy(str,s);

}

string(const string& t)
// copy constructor, takes a reference
// to another string as the parameter

{
str = new char [strlen(t.str) + 1];
strcpy(str,t.str);

}

~string() // destructor
{

delete [] str;
}

void print() const
// print a string

{
cout << str;

}
};

int main()
{

string s1; // use default constructor
string s2("hello world");

// use constructor with `char *' argument
string s3(s2);

// use copy constructor

// print the strings
s1.print();
s2.print();
s3.print();

return 0;
}

Note that the class definition is terminated with a semi-colon.

Programming in C++ l9.3/1

OUCS April 199420

Members of the class (whether data or functions) are assumed to be in the private section,
unless stated otherwise.

2.2.2 Structures

Structures are similar to classes, but the default is for members to be public rather than
private. Therefore structures can contain both data and functions.

2.2.3 Objects

An object is an instance of a class. For object read variable!

Every time we define a variable we get a new object which has all the properties of the
associated class. This is the same as with the built-in types of C (float, int etc.) — they
have certain properties (range of values, operations etc), the bonus is that we can make up
our own as well!

2.2.4 Constructors and Destructors

Constructor methods are called when an object is created, destructor methods are called
when the object is destroyed. For automatic objects this will be on entry and exit from the
block in which the object is defined. Constructors are frequently used for memory allocation
and initialisation, destructors could be used for deallocation of storage in a data structure.

For a class called string, the constructor is called string and the destructor is called
~string.

Constructors cannot return a value, but it is also invalid to declare them as returning void.

Several constructors can be specified, as long as they have different parameter lists.
A constructor that takes no parameters is called the default constructor, and a constructor
that takes an object of the same class as its parameter is called the copy constructor.

The copy constructor takes a reference to an object of the same class. So that const
objects can be used as an initialiser, the parameter should be declared to be const.

class string {
char *str;

public:
string() {} // default constructor
string(const string& s) {}

// copy constructor
~string() {} // destructor

l9.3/1 Programming in C++

April 1994 OUCS21

If a constructor can take parameters, then the parameters can be specified using the
following syntax:

string s(parameters);

There are also two methods of calling the copy constructor after having first constructed a
new temporary object:

string s = string(parameters);

or the abbreviated form:

string s = parameter;

For example, the following are all valid ways of initialising a string using a char *
initialiser; the first uses a constructor that takes a char * parameter, the others use the
char * constructor to create a new object, and then use the copy constructor to initialise
the object:

string s1("one");
string s2 = string("two");
string s3 = "three";

The copy constructor is used for passing parameters by value; constructors are also needed
when returning values from functions.

string search(const string s, char c)
{

return string(strchr(s.str,c));
}

[For the above function to work it would have to be declared to be a friend of the
string class; see 2.2.14]

When the search function is called, the argument is copied and a new string created
using the copy constructor to initialise it. When the string value is returned from
search, again a new string is created, but this time the constructor used is the one that
takes a char * parameter.

2.2.5 Member Functions

Member functions are functions that are defined or declared within the body of a class
definition. They form part of the class description. Member functions are normally used to
provide operations on the class data. As they form part of the class definition, each instance
(variable) of the class will have associated with it the operations defined within the class.
By making the functions that modify or read the data contained in the class member
functions we know that any code that sets or reads the data incorrectly must be within the
class itself. This helps debugging and makes it easier to produce abstract data types.

Member functions are also referred to as class methods.

Programming in C++ l9.3/1

OUCS April 199422

If the code for a member function is defined within the class, then that member function will
be treated as an inline function (see 1.12); more normally the member function is declared
within the class and defined elsewhere. The scope resolution operator, ::, is used to specify
the class to which the function belongs.

An alternative way of defining the print method from the string class shown above
would be:

class string {
 private:

char *str;

 public:

constructors and destructors

// declare the print method
void print() const;

};

// define the print method
void string::print() const
{

cout << str;
}

2.2.6 Operators as Member Functions

It is possible to define operators for classes. These operators can be infix binary operators
or unary operators. It is only possible to define operators that use an existing C++ operator
symbol, and the precedence of the symbol cannot be changed. There are some operators
that cannot be defined, these are:

. .* :: ?: sizeof # ##

Unary operators are defined as a member function taking no parameters, binary operators
are defined as member functions that take one parameter — the object on the right hand side
of the operator.

When defining an assignment operator (operator=) always declare it to take a reference
to the object on the right hand side of the assignment operator and return a reference to the
object on the left of the operator; this will permit assignments to be chained (a = b = c;).
Also declare the parameter (the object on the right of the operator) to be const to prevent
accidental modification and also to permit const objects to be used on the right hand side
of the assignment operator.

l9.3/1 Programming in C++

April 1994 OUCS23

class string {
char *str;

public:

string& operator= (const string& rhs)
{
// delete the current string
delete [] str;

// allocate enough room for the new one
str = new char [strlen(rhs.str) + 1];

// copy in the string
strcpy(str, rhs.str);

return *this; // see 2.2.12
}

};

Programming in C++ l9.3/1

OUCS April 199424

The following shows a concatenation operator for the string class:

#include <iostream.h>
#include <string.h>

class string {
 private:

char *str;

 public:

constructors and destructors as before

string operator+ (const string& rhs) const
{

char *s;

// create a new C style string holding
// the concatenated text
s = new char [strlen(str)+strlen(rhs.str)+1];
strcpy(s,str);
strcat(s,rhs.str);

// create a new `string', initialising it with the C
// style string
string newstring(s);

// delete the C style string, no longer needed
delete [] s;

// return a copy of the newly created string
return newstring;

}

void print() const
{

cout << str;
}

};

This operator can then be used in two different ways (assuming that an assignment operator
has also been defined; see exercise 2.2.9...(2)):

int main()
{

string s1("hello");
string s2("world");
string s3,s4;

s3 = s1.operator+(s2);
s4 = s1 + s2;

return 0;
}

cfront 3 (see 6) introduced a mechanism for defining both prefix and postfix ++ and --
operators, until then only postfix was possible.

l9.3/1 Programming in C++

April 1994 OUCS25

class X {
X& operator++() { } // prefix
X& operator++(int) { } // postfix

};

The int argument of the postfix operator is a dummy parameter used only to distinguish
the two operators.

2.2.7 Default Member Functions

All classes get the following three default member functions:

X::X() default constructor
X::X(const X&) copy constructor (bitwise copy)
X::operator=(const X&) assignment of another object of same class (bitwise

copy)

The type of the argument to the copy constructor is const X& if either there are no object
members or all object members of X have copy constructors that accept const arguments,
otherwise the type is X& and initialisation by a const object is illegal. The same is true of
the assignment operator.

The copy constructor and assignment operator perform a bitwise copy member by member
into the new object.

2.2.8 Access Specifiers

Access to class members is controlled by the access specifiers private, protected and
public.

private can only be used by member functions
protected can only be used by member functions and by member functions of

derived classes (see 2.3.1)
public can be used by anyone! Functions and data that you wish to be

exported/published should be placed in the public section

Multiple private (or protected or public) sections are permitted. In classes any unmarked
sections are deemed to be private, in structures they are assumed to be public.

class X {
char *s1; // private

public:
char *s2; // public

private:
char *s3; // private

};

Programming in C++ l9.3/1

OUCS April 199426

2.2.9 Exercises

(1) Using enumerated types define a class date, which can be initialised by writing:

date d(Mon, 13, Nov, 1989);

Write methods for: constructor (used as above), copy constructor and printing.

The enumerated types for the day and month will need to be visible outside of the class to
make the initialisation above possible, therefore make the two enumerated types global.

(2) Add an append operator (operator+=) to the string class in the example file
string.cpp.

2.2.10 Methods and Messages

In the jargon of OOP the functions defined in a class are called methods. Methods are
invoked by sending an object a message.

In the string example given above we used the statement:

s4 = s1 + s2;

This actually involves sending the following messages to the following objects

Object Message
s1 + s2
s4 = result of above

l9.3/1 Programming in C++

April 1994 OUCS27

More normally in C++ (the above example uses infix operators) the syntax for passing a
message to an object will be

object.method(other_info,...);

e.g.

x.times(3); // multiply x by 3

The full form of the statement s4 = s1 + s2; is:

s4.operator=(s1.operator+(s2));

2.2.11 Order of Evaluation

The order of evaluation in expressions is determined by the precedence of the operators used
(just as it is in C). Note that, whilst a programmer can define functions that act as operators,
they cannot change the precedence or associativity of that operator. In the following
example, evaluation will proceed from left to right:

z = a + b + c;

A new temporary object will be created to hold the value of a + b, this new object will then
receive the message to add itself to c. Once the value has been assigned to the object z, the
temporary variable will be destroyed.

2.2.12 The Implicit Argument – this

When an object receives a message we can use the reserved word this to gain access to the
object itself. this is a pointer to the object, so *this is the object itself. For example, the
following function returns a reference to the object that received the message:

complex& operator=(const complex& rhs)
// assignment

{
real = rhs.real; // assign to private data
imag = rhs.imag; // assign to private data

 return *this; // return the object
}

Programming in C++ l9.3/1

 When assigning to a string object (section 2.2.6) the code deleted the current string,2

and then made a copy of the string on the right hand side of the operator. If the same object
appears on both sides of the operator, then the string will be destroyed without a copy being
kept!

OUCS April 199428

this can also be used in operator= to prevent unnecessary, or even destructive ,2

assignment when the same object is on both sides of the assignment operator, e.g.

complex a;
complex& b = a; // b refers to a

a = a;
a = b;

Both of the assignments above involve an assignment back to original object. This can be
prevented by comparing pointers to the two objects, if they are the same, then the objects
are the same:

complex& operator=(const complex& rhs)
{

if (&rhs != this) { // compare pointers to rhs
// and ourselves

assign to private data
}
return *this;

}

2.2.13 const members

Member functions that have the qualifier const after their parameter list are not able to
modify the data stored within the class unless the const is “cast away”. This is easier to
explain with an example:

l9.3/1 Programming in C++

April 1994 OUCS29

class complex {
double real, imag;

public:

void tom() const
{

real = 1.0; // illegal
}

void dick() const
{

((complex *)this)->real = 1.0;
// OK

}

void harry()
{

real = 1.0; // OK
}

};

const member functions can be called for both const and non-const objects, non-
const members can only be called for non-const objects. In fact, this can be used to call
different functions for const and non-const objects, e.g.

class string {
char *str;

public:

const char& operator[](int index) const
// operator[] for const objects
// returns a ref to a constant char
{

return str[index];
}

char& operator[](int index)
// operator[] for non-const objects
// returns a ref to a char
{

return str[index];
}

};

int main()
{

const string s1("hello");
string s2("world");

s1[0] = 'z'; // calls first operator[], and is illegal
// as we're trying to modify through a
// const reference

s2[0] = 'z'; // calls second operator[], and sets the
// first character of s2 to 'z'

return 0;
}

Programming in C++ l9.3/1

OUCS April 199430

The attempt to modify the first character of s1 will fail, as a reference to a constant
character is returned.

2.2.14 Friends

Functions and other classes can be declared to be friends of a class, they can then access
private data and private functions of the class specified.

2.2.15 Operators — Member Function vs Global Function

Binary operators are often defined as a global function accepting two parameters. [If the
function needs to access private members of the class, then it will also need to be declared
to be a friend of the class.] This is done in cases where it is not possible to modify the
source code for the class that the function would normally need to be a member of. A good
example of this is the definition of a stream output operator. It is not possible to modify the
code for the stream classes, so instead we overload the operator << further by defining a
function called operator<< with two parameters, and make it a friend of the class we
are working on. See exercise 2.2.20...(2) below.

binary operator
member one parameter
global two parameters

unary operator
member no parameters
global one parameter

As member functions have one implied argument (the object receiving the message),
member functions used as infix operators have one less parameter than a non-member
function that is declared to be a friend. For example:

l9.3/1 Programming in C++

April 1994 OUCS31

class complex {
double real, imag;

public: // everything below is public

complex(double re = 0.0, double im = 0.0)
{

real = re; imag = im;
}

// method declarations

complex operator+(const complex&) const;
friend complex operator-(const complex&, const complex&);
complex operator=(const complex&);

};

// complex methods

complex complex::operator+(const complex& arg) const
// member function
{

return complex(real + arg.real, imag + arg.imag);
}

complex operator-(const complex& arg1, const complex& arg2)
// global friend function
{

return complex(arg1.real-arg2.real, arg1.imag-arg2.imag);
}

complex& complex::operator=(const complex& rvalue)
// member function
{

real = rvalue.real;
imag = rvalue.imag;
return *this;

}

int main()
{

complex a,b,c;

a = b + c; // uses member function operator+
a = b - c; // uses a global function
return 0;

}

Global functions can also be used to reduce the number of member functions needed, as the
compiler will use constructors to cast parameters to the correct type if a declaration for the
function exists. For example, consider dealing with the following expression:

a + b

where a and b could be either of integral or floating point type or of our own type complex.
Using member functions, then we would not be able to deal with the situation where a is not
complex, the object receiving the message would need to be complex. This restriction does
not apply to global functions. Also using an ordinary function we need only write one

Programming in C++ l9.3/1

OUCS April 199432

function to cope with all the above circumstances, one where both the parameters are of type
complex, that is:

complex operator+ (const complex& arg1, const complex& arg2);

If we have a complex constructor that can form a complex from an integer or floating
point value (and we do!) then values of these types will be promoted to type complex (using
the constructor) automatically.

2.2.16 static Class Data

For static data only one copy per class instead of one copy per object will be stored.
static data is initialised outside of the class.

The following code shows a class where arrays of values are shared between all instances
of the class.

l9.3/1 Programming in C++

April 1994 OUCS33

enum day { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
enum month { Jan, Feb, Mar, Apr, May, Jun,

 Jul, Aug, Sep, Oct, Nov, Dec };

class date {
static char *days[7];
static char *months[12];
static int dayspermonth[12];

public:

// declaration of constructor
date (day aDay = Mon, int aDate = 1,

month aMonth = Jan, int aYear = 1900);
};

char *date::days[] = {
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday"
};

char *date::months[] = {
"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"
};

int date::dayspermonth[] = { 31,28,31,30,31,30,
31,31,30,31,30,31 };

2.2.17 Conversions

Classes can also have member functions that convert an object into a value of another type.
For example, complex might have an operator double() conversion method that
returns the real part of the complex number. Such an operator will be used wherever an
explicit cast operator is used, but also when needed to match with function declarations.

Programming in C++ l9.3/1

OUCS April 199434

#include <math.h>

class complex {
double real,imag;

public:

.... // other members as above

operator double()
{

return real;
}

};

void main()
{

complex c(1.0,2.0);
double d;

d = double(c); // assign real part to d
d = exp(c); // calc e raised to power of real part

// c has been converted to double
}

2.2.18 Class Objects as Members

Classes can have members which are objects of another class, e.g.

class fred {
complex c;

public:
// constructor, declaration only
fred(double re = 0.0, double im = 0.0);

// destructor
~fred() {}

// print
void print() {}

};

When initialising an object member, there are two methods:

– assignment
– member initialisation

l9.3/1 Programming in C++

April 1994 OUCS35

// use assignment to initialise the complex member
fred::fred(double re, double im)
{

c = complex(re,im);
}

// use member initialisation to initialise
// the complex number
fred::fred(double re, double im) : c(re,im) { }

[Remember that these two constructors are alternatives, they cannot coexist.]

With the first method:
– the complex member is initialised with the default constructor of class complex
– a temporary complex object is created and initialised with re and im

– the complex assignment operator (operator=) is called

With the second method:
– the complex member is initialised using the complex constructor that takes two

double arguments

Therefore the second method is usually preferred, it is much more efficient.

Note that the second method is the only method that can be used with const members.

Programming in C++ l9.3/1

OUCS April 199436

2.2.19 An Example Class — Complex Numbers

#include <iostream.h>
#include <math.h>

// complex declaration

class complex { // complex number
// class description

double real, imag; // this is private

public: // everything below is public

complex(double re = 0.0, double im = 0.0)
 // Constructor #1, definition function
 // - used to allocate memory for variables of
 // type complex
 // - uses parameters with default values
 // - is an inline function

{
real = re; imag = im;

}

complex(const complex& othercomplex)
 // Constructor #2, copy initialiser
 // - takes a reference to another complex number as
 // its argument
 // - inline function

{
real = othercomplex.real; imag = othercomplex.imag;

}

operator double() const
// conversion into a double

{
return real;

}

// method declarations

complex& operator=(const complex&);
 // assignment
 // - takes a reference to a complex number
 // - returns a reference to a complex number

// and finally, our friends

friend complex operator+(const complex&, const complex&);
 // addition
 // - takes two references to complex numbers
 // - returns a complex number

friend complex operator-(const complex&, const complex&);
 // subtraction
 // - takes two references to complex numbers
 // - returns a complex number

}; // class description ends

continued...

l9.3/1 Programming in C++

April 1994 OUCS37

...continued

// complex methods

complex& complex::operator=(const complex& rhs)
// assignment
{

real = rhs.real;
imag = rhs.imag;
return *this;

}

// friends

complex operator+(const complex& lhs, const complex& rhs)
// addition
{

return complex(lhs.real + rhs.real, lhs.imag + rhs.imag);
}

complex operator-(const complex& lhs, const complex& rhs)
// subtraction
{

return complex(lhs.real - rhs.real, lhs.imag - rhs.imag);
}

int main()
{

complex a;
// declaration & definition of a complex number
// uses definition function (constructor #1)
// will be initialised to 0 + i0

complex x(1.0,2.0), y(20.0), z(11.0,12.0);
// use definition function

complex u(x);
// uses copy initialiser function

complex v = x;
// uses copy initialiser function;
// it is identical to definition of u above

complex w = x + y - z;
// uses copy initialiser function, after
// producing a temporary unnamed variable
// holding the result of x + y - z

a = x + y - z;
// use overloaded operators
// uses +, - & = functions above

cout << double(a) << endl;
// use the double conversion operator

cout << exp(a) << endl;
// print e to the power of the real
// part of a; uses the double conversion
// operator

return 0;
}

z z x iy |z|

|z| x 2 y 2

Programming in C++ l9.3/1

OUCS April 199438

2.2.20 Exercises

(1) The modulus of a complex number , where is , is written as and is given by

Make a copy of the example file complex.cpp in your own directory, and add a mod
method to the complex class that returns the modulus of the complex number as a double
value.

(2) Add a print routine to the complex class. Use a global friend function; add the following
declaration to the class definition:

friend ostream& operator<< (ostream& stream, complex& c);

and then use the following outline for the function itself; which will appear outside the class
definition:

ostream& operator<< (ostream& stream, complex& c)
{
}

(3) The file stack.cpp contains the bare bones of a stack class definition. Make a copy of the
file and then complete the definition.

(4) The files list.h and list.cpp contain a class which implements a linked list of objects
of any class derived from Object in the Borland class library. Use them to construct a
linked list of names. Use Borland's String class to store the strings. The example file
uselist.cpp gives a solution to this exercise.

The list.cpp program is loosely based on an example program in An Introduction To
Object Oriented Programming And C++ by Wiener & Pinson.

2.3 Inheritance and Polymorphism

2.3.1 Derived Classes

It is possible to derive classes from existing ones. The derived class inherits all the features
of the existing base class, and can then add new features.

The main programming benefit from deriving classes are code reusability and ease of
maintenance.

Reusability A linked list base class can be used in many different situations, all of
which require slight changes to the feature list. For example, we might
use the linked list class to derive classes that handle stacks, queues
etc. We are automatically reusing the code from the base class in all
of the derived classes.

l9.3/1 Programming in C++

April 1994 OUCS39

Maintenance After we have coded and debugged a class, unless there are
extenuating circumstances we would normally leave the class alone.
If we require a class that behaves slightly differently then derive a new
class from the old one. This allows us, at last, to follow the adage “if
it ain't broke don't fix it”!

Inheritance also pays huge dividends in the area of libraries. Normally we do not have the
source code for the library functions. If we want to alter a class to fit our own needs we can
derive a class from the library class adding extra features, or overriding functions as
necessary.

2.3.2 Deriving a New Class

There are three ways of deriving a new class from a base class:

class derived : public base {};
class derived : private base {};
class derived : protected base {};

The difference between these declarations are:

public base public members of base become public members of derived,
protected members of base become protected members of
derived

private base public and protected members of base become private members
of derived

protected base public and protected members of base become protected
members of derived

If the specifier public, private or protected is omitted then private is assumed for
classes and public is assumed for structures.

There is no way for the derived class to get its hands on the private data or member
functions of the base class.

2.3.3 Derived Classes; Constructors and Destructors

Constructors and destructors are not inherited (see Stroustrup r.12.1 and r.12.4). However,
if a base class has a constructor then that constructor will be called before the constructor
of the derived class. The same holds for destructors, except that the base class destructor
is called after that of the derived class. [See Stroustrup r.12.4]

Base classes behave (in this respect) like members of the derived class. The constructor of
the base class is called, or if it requires parameters these can be specified in the following
way:

Programming in C++ l9.3/1

OUCS April 199440

class base {
int I;

public:
base(int i) { I = i; }

};

class derived : public base {
int J;

public:
derived(int i, int j) : base(i) { J = j; }

};

The first argument to the constructor of derived is passed on to the constructor of base.

For example, a 3-D point may be derived from a 2-D point. The 3-D point will inherit the
x and y values of the 2-D point and will add a z coordinate. The constructor for a 3-D point
can use the 2-D constructor, and then concentrate on what is different between a 3-D point
and a 2-D one.

class 3Dpoint : public 2Dpoint {
double z;

public:

// constructor
3Dpoint(double X = 0.0, double Y = 0.0, double Z = 0.0)

: 2Dpoint(X,Y)
{

z = Z;
}

};

2.3.4 Virtual Functions and Polymorphism

2.3.4.1 Polymorphism

If the same function can be applied to objects of different types then that function is
polymorphic. Whilst polymorphism could be implemented in C using a function that takes
a pointer to the object to use, in C++ the process is usually implemented by having member
functions of the same name in several classes.

2.3.4.2 Virtual Functions

Virtual functions can be used when a member function is called through a pointer of the type
pointer to a base class. The function called will be the function of that name in the derived
class, even though the pointer is declared as a pointer to the base class. The following
example illustrates the difference between a normal member function and one that is
declared to be virtual.

l9.3/1 Programming in C++

April 1994 OUCS41

#include <iostream.h>

class shape {
public:

virtual void draw() { cout << "draw shape\n"; }
void paint() { cout << "paint shape\n"; }

};

class square : public shape {
public:

void draw() { cout << "draw square\n"; }
void paint() { cout << "paint square\n"; }

};

class circle : public shape {
public:

void draw() { cout << "draw circle\n"; }
void paint() { cout << "paint circle\n"; }

};

int main()
{

circle c;
square s;
shape *ptr;

ptr = &c; // pointer to derived is compatible
// with pointer to base

ptr->draw(); // which draw method do we get?
// ans: circle's draw

ptr->paint(); // which paint method do we get?
// ans: shape's paint

ptr = &s;
ptr->draw(); // call square's draw
ptr->paint(); // call shapes's paint

shape *shapes[10];
// declare an array of 10
// pointers to shape

shapes[0] = new square;
shapes[1] = new circle;

// set shapes[0] to point to a square
// and shapes[1] to point to a circle

for (int i = 0; i < 2; i++)
shapes[i]->draw();

// call the draw method of the appropriate
// derived class

return 0;
}

Virtual functions require late binding, we don't know until run time which method will be
called. Until now, even with function and operator overloading the decision over which
function or method to call is made at compile time, there is no run-time overhead without
virtual functions.

Programming in C++ l9.3/1

OUCS April 199442

2.3.4.3 Pure Virtual Functions and Abstract Base Classes

Have no body e.g.

virtual void draw() = 0;

Derived classes must redefine this method, overriding this function.

Classes containing one or more pure virtual functions are called abstract base classes. It
is not possible to create objects of an abstract base class, instead they are used as base
classes from which to derive new classes. For example, using the example classes in
2.3.4.2, shape could be turned into an abstract base class. This would prevent declaration
of shape objects. Pointers to abstract base classes (in this case shape) are permitted, so
the rest of the code in the shape program would not have to be changed.

2.3.4.4 Virtual Destructors

If you are likely to access derived class objects through a pointer to the base class (as in the
shape example in 2.3.4.2) then the destructor of the base class should be declared to be
virtual. That way, when objects are destroyed through the pointer the destructor of the
derived class is called rather than the base class destructor.

2.3.5 Exercises

(1) Using the example program shapes.cpp, derive a class filled_rect using
rectangle as the base class. The constructor for filled_rect should call the
rectangle's constructor. Modify the main program so that some filled rectangles are
drawn. You can use the oucsgraph graphics library function fillRectangle to draw the
shape.

(2) Derive a class string from the String class in the Borland class library. This new class
should declare an operator<< function as a friend, and you should then define this
function. This will allow strings to be printed using:

cout << str;

instead of using the String method printOn, i.e.

str.printOn(cout);

It will be necessary to define a constructor that takes a const char * parameter and
simply passes this value on to the String constructor. A copy constructor will be provided
for us by C++.

To use the String class from the Borland class library you should #include
<strng.h> and link in tclasss.lib (you will need to create a project file to do this).
You may also need to change the directories that Turbo C++ searches for include files and

l9.3/1 Programming in C++

April 1994 OUCS43

libraries (this has been done for you on the system used during the course). Select the
directories option of the options menu and change the directory paths to the following:

 Include directories: c:\borlandc\include;c:\borlandc\classlib\include
 Library directories: c:\borlandc\lib;c:\borlandc\classlib\lib

(3) Use inheritance to define a stack class in terms of the list class used in exercise 2.2.20...(3).
Define put and get operations to add and remove items from the stack.

(4) The following exercise comes from Advanced Programming and Problem Solving With
Pascal by Schneider & Bruell.

Consider the following problem. You are given a stack and asked to reverse its
contents, as in the following example.

Top -> 5 Top -> 68
15 19
35 7
2 2
7 35
19 15
68 5

(a) (b)

How would you accomplish this task? An elegant solution (although it requires
more storage than is actually needed) employs a queue. You simply pop off
elements of the stack one at a time and enqueue them (put). Then dequeue (get)
the elements one at a time and push them onto the stack.

Write a program that creates an instance of a queue and a stack (Queue and Stack from
the Borland class library). The program should then read integers until a 0 is entered. Each
integer should be pushed onto the stack. This should leave you in position (a) above. The
program should then pop all the entries from the stack and put them in your queue. You
should then be able to get all the items from the queue and push them back onto the stack.
The program should then print the contents of the stack, which should be the numbers you
entered in the order that you entered them.

[Note that you will need to define an Integer class (say) that is derived from Object.
]

Programming in C++ l9.3/1

OUCS April 199444

3 Templates
As we've seen through the course, it pays to make functions and data structures as generic
as possible. It would be a great shame if we had to write one set of code for a stack of
integers and another for a stack of floats.

We've also seen two ways of achieving this.

The first is only to store pointers to our data in the data structures we create. By using the
type void * we can subsequently store pointers to anything. The major problem with this
approach is that we need to remember what kind of object the pointer was pointing to so
that we can convert the pointer back to the right type when we remove data from the data
structure. For example, if we coded a stack using generic pointers, then we would need to
do the following when using push and pop:

stack s;
float *p;

p = new float;
*p = 45.1;
s.push(p);
...
p = (float *)s.pop();

The second technique is to make use of the fact that pointers or references to a derived class
are type compatible to pointers or references to the base class. This is used to great effect
in the Borland class library, where anything that is derived from Object can be stored in
one of the data structures available in the library. In fact, different types of objects can be
stored in the same stack or queue.

A third and better option now exists, templates. Templates can be used to define classes or
functions. The code below specifies a stack class (Stroustrup [1] p. 256):

template<class T>
class stack {

T *v;
T *p;
int sz;

public:
stack(int s) { v = p = new T[sz=s]; }
~stack() { delete[] v; }

void push(T a) { *p++ = a; }
T pop() { return *--p; }

int size() const { return p-v; }
};

l9.3/1 Programming in C++

April 1994 OUCS45

We can then use this template to declare stacks of whatever we want:

stack<shape *> ssp(200); // stack of pointers to shapes
stack<int> si(400); // stack of integers

Note that we have to specify the type of the object to store in the stack in angle brackets.
The type name we use there is used by the template as a replacement for T in the template
above.

Whilst we have lost the ability to store different objects in the stack (though derived classes
are still acceptable), we have not lost the careful type checking of parameters that both of
the first two methods suffer from.

As stated above, templates can be used when writing generic functions, for example, a
function that swaps two values of the same type:

#include <iostream.h>

template<class T> void swap(T& a,T& b) {
T t;

t = a;
a = b;
b = t;

}

void main()
{

double x = 1.0, y = 2.0;
int i = 5, j = 6;

cout << i << ' ' << j << ' ' << x << ' ' << y << endl;
swap(x,y);
swap(i,j);
cout << i << ' ' << j << ' ' << x << ' ' << y << endl;

}

4 Exceptions
Exceptions are a method of dealing with run-time errors. It is not always possible for
functions to return an error value (e.g. a function that pops an int value from a stack, all
possible return values are valid, there is no special value that can be used to indicate an
error condition), and even if they can, it is awkward to always check the return value.
Exceptions offer an alternative method of handling errors.

Exceptions are very new to C++, and there are not many compilers that support them.

Exceptions are thrown when errors occur; they can then be caught and appropriate action
taken. Exceptions can only be detected inside try blocks, and can only be handled or
caught inside catch blocks. The following program throws an error if the buffer cannot
be allocated. The exception is caught and the program terminated after printing a suitable
error message.

Programming in C++ l9.3/1

OUCS April 199446

#include <iostream.h>

int main()
{

try {
...
char *buffer = new char[size];

if (buffer == 0)
throw "Out of memory";

...
}
catch (const char *str) {

cerr << "Exception: " << str << endl;
exit(1);

}
}

There is no need for the exception to throw a string (as in this example), in fact objects of
any type can be thrown.

5 Separate Compilation
One of C and C++'s advantages is the separate compilation of groups of functions. There
are a few rules of thumb that help this process.

Consider the definition of a class, e.g. a stack. If it is intended to compile the class
separately so that it can be linked into whatever programs require it, then the following
makes life easier:

– Every source file that uses or defines any of the methods of stack (so this includes both
the file that uses a stack and the file in which the methods are defined) needs to know
what the class looks like. This means that they must all include the declaration of the
stack class. This can be solved by putting the declaration in a header file and including
it (with #include) in any source file that refers to stack.

– As there can only be one declaration of a stack in any one source file, prevent multiple
including of the header file by defining a preprocessor constant. Only if this constant
has not been defined are the contents of the header file used.

– Put the non-inline methods of stack in a separate source file (remembering to
#include the declaration of stack) and compile it to an object file.

– Compile the program that uses a stack, but when it comes to linking link in the object
file produced above.

l9.3/1 Programming in C++

April 1994 OUCS47

stack.h

#ifndef __STACK__
#define __STACK__

#include <object.h>

class stack {
Object **data; // a pointer to a pointer to an Object
int ptr; // pointer to next free location

public:
// in-line constructor
stack()
{

data = new Object*[100];
// create an array of 100 pointers to Object

ptr = 0;
// ptr points to first free element in array

}

// in-line destructor
~stack()
{

delete [] data;
}

// declarations for push, pop & isEmpty
void push(Object*);
Object *pop();
int isEmpty();

};
#endif

stack.cpp

#include "stack.h"

void stack::push(Object *obj)
{

data[ptr++] = obj;
}

Object *stack::pop()
{

return data[--ptr];
}

int stack::isEmpty()
{

return ptr == 0;
}

Programming in C++ l9.3/1

OUCS April 199448

usestack.cpp

#include "stack.h"
#include <strng.h>

int main()
{

stack s;
String str1("hello"),str2("world");

s.push(&str1);
s.push(&str2);

while(!s.isEmpty())
cout << *s.pop();

return 0;
}

To compile the stack class separately using a command line compiler, type:

cc -c stack.cpp

Where cc is your C++ compiler (e.g. bcc, tcc, gcc etc.).

To compile the program that uses a stack using a command line compiler, type:

cc usestack.cpp stack.obj tclasss.lib

If you are using the Turbo or Borland C++ IDE (Integrated Development Environment) then
create a project file that includes the following files:

usestack.cpp
stack.obj
tclasss.lib

Or replace stack.obj with stack.cpp if it is likely that the file stack.cpp or
stack.h will change.

Notice also that as both stack.cpp and usestack.cpp include the same header file, if
the class declaration is ever changed both will automatically pick up the same new version.

l9.3/1 Programming in C++

April 1994 OUCS49

6 C++ Versions
There is not yet an ANSI or ISO standard for C++ (but it is being worked on!). C++ is an
evolving language, so some of the features described in this guide may not be available on
all C++ compilers. C++ started life at AT&T using a C++ to C translator called cfront.
AT&T (actually Unix Systems Laboratories now) still sell cfront, and people often refer to
the different versions of cfront when talking about new language features. The following
description of cfront versions comes from the C++ Frequently Asked Questions (FAQ) list
posted to the USENET news group comp.lang.c++:

1.2 as described in the first edition of Stroustrup's The C++ Programming
Language

2.0 multiple/virtual inheritance and pure virtual functions
2.1 semi-nested classes and delete []
3.0 fully nested classes, templates and syntax to define prefix and postfix

increment and decrement operators
4.0(?) will include exceptions

Borland C++ 4.0 does support exceptions. The Borland Turbo C++ 3.1 compiler used in
class is roughly equivalent to cfront 3.0.

7 Bibliography
Books used in the development of this course, and in teaching myself C++ were:

Bjarne Stroustrup: The C++ Programming Language, Second Edition, Addison-Wesley
1992, £24.95.

One of the two main C++ references (the other is the Annotated C++ Reference
Manual or ARM). Extremely useful, but not really a tutorial text.

Robert Lafore: Object–Oriented Programming In Turbo C++, Waite Group Press 1991,
£26.95.

Fast becoming a favourite of mine.

Scott Meyers: Effective C++, Addison-Wesley 1992, £20.95.
Useful collection of hints and tips.

Scott Robert Ladd: C++ Techniques and Applications, M&T Books 1990, £19.95.
Some very useful information, but not as good (in my view) an introduction as Lafore.

Cay S. Horstmann: Mastering C++, An Introduction to C++ and Object–Oriented
Programming For C and Pascal Programmers, John Wiley 1991, £21.50

Small, light, extremely informative, but only really if you know C quite well.

Entsminger & Eckel: The Tao of Objects, M&T 1991, £19.95
I personally found this a “right rivetting read”. It has examples in Turbo Pascal and
C++, and covers all sorts in interesting aspects of the design of Object Oriented
programs.

