Oxford University Computing Services

Programming in C++

L anguages 19.3/1

Typographical Conventions
Listed below are the typographica conventions used in this guide.

— Example C++ code and commands to be typed by the user are in non-bold charactersint ypewri t er
font.

— Items where the user has to supply a name or number are given in lower-case i t al i ¢ characters in
typewriter font.

— Sections marked with a I describe features that are dso available in ANS| C.

Acknowledgements

I would like to thank Francis Cameron and Adrian Cox, who have both acted as demonstrators for the OUCS
C++ course, for their many suggestions and ideas on improving these notes and the OUCS C++ course.

Programming in C++ 19.3/1

Contents
1 C++asaBetter C 1
1.1 Comment to End of Line 1
1.2 Enumeration and Structure Names 1
1.3 Declarations within Blocks 2
1.4 Scope Qualifier 2
1.5 const 2
1.6 Explicit Type Conversion 3
1.7 Function Definitions and Declarations 4
1.8 Overloading of Functions and Operators 5
1.9 Default Values for Function Parameters 6
1.10 Name Mangling 7
1.11 Functions with a Variable Number of Parameters £ 7
1.12 Inline Functions 9
1.13 new and delete Operators 10
1.14 Void Type ¥ 11
1.15 Stream Library 12
1.16 References 13
1.16.1 Pointers vs. References 14
1.16.2 Reference Parameters 14
1.16.3 Functions Returning References 15
1.16.4 References and const 15
1.17 Exercises 16
2 Object Oriented Programming 16
2.1 Rationde 16
2.2 Classes 17
2.2.1 The Class Construct 17
2.2.2 Structures 19
2.2.3 Objects 19
2.2.4 Constructors and Destructors 19
2.2.5 Member Functions 20
2.2.6 Operators as Member Functions 21
2.2.7 Default Member Functions 23
2.2.8 Access Specifiers 23
2.2.9 Exercises 24
2.2.10 Methods and Messages 24
2.2.11 Order of Evaluation 25
2.2.12 TheImplicit Argument —this 25
2.2.13 const members 26
2.2.14 Friends 28
2.2.15 Operators — Member Function vs Global Function 28
2.2.16 static Class Data 30
2.2.17 Conversions 31
2.2.18 Class Objects as Members 32
2.2.19 An Example Class — Complex Numbers 34

April 1994 oucs

2.2.20 Exercises 36

2.3 Inheritance and Polymorphism 36

2.3.1 Deived Classes 36

2.3.2 Deriving aNew Class 37

2.3.3 Derived Classes; Constructors and Destructors 37

2.3.4 Virtua Functions and Polymorphism 38

2.3.4.1 Polymorphism 38

2.3.4.2 Virtua Functions 38

2.3.4.3 Pure Virtua Functions and Abstract Base Classes 40

2.3.4.4 Virtua Destructors 40

2.3.5 Exercises 40

3 Templates 41

4 Exceptions 43

5 Separate Compilation 44

6 C++ Versions 47

7 Bibliography 47
References

[1] The C++ Programming Language, Bjarne Stroustrup, Addison Wesley, Second Edition 1992

Author: Stephen Gough
Revison History:

19.3/1 April 1994 Origina publication

© Oxford University Computing Services 1994
Although formal copyright is reserved, members of academic institutions

may republish the materia in this document subject to due
acknowledgement of the source.

C makesit easy for you to shoot yourself in the foot. C++ makes it harder, but when you do it blows your
whole leg away!

Bjarne Stroustrup

oucs April 1994

19.3/1

1 C++ asaBetter C

Programming in C++

Features marked with a are available in ANSI C.

1.1 Comment to End of Line

a += 6;

// this is a coment

The new style comments are useful as it is possible to comment out code containing

comments, e.g.

11 +
/1 +

a
b

6 // this is a coment
7.

With C style comments (which are till available in C++) problems occur:

/*
a += 6;
b += 7;
*/

/* this is a comment */

The close comment symbol in the original comment ends the new comment, leaving code
uncommented and a*/ symbol which will cause the compiler distress.

1.2 Enumeration and Structure Names

The name of an enumeration or structure is atype name. The keyword enumor st r uct is
not required in subsequent use of the type, eg. in variable declarations or in other type

constructors.

enum pri mary_col our

primary_col our

enum pri mary_col our

struct conpl ex

conpl ex harry;

struct conplex jim

{ red, green,
/1 primary_col our

bl ue };
is a enunerated type

col our;

/1l colour can only be red,
/1 green or blue

col our 2;

/1 old fashi oned decl aration

{ double re, im } fred;
/1l conplex is a structured type
/1l fred is a variable of type conplex

/1l harry is a variable of
/1 type conpl ex
/! old fashi oned decl aration

April 1994

1 oucCs

Programming in C++ 19.3/1

1.3 Declarations within Blocks

C++ permits declarations of variables and types anywhere within a block, not just at the
start of ablock. Variables can be declared closer to their point of use, reducing the risk of
forgetting the type or misspelling the name. The ability to declare and initialise variables
after statements aso means that more complication structures are not initialised twice. For
example, an array will beinitialised to contain zeros without an initialiser, if the data is not
known until later, then the array will be filled twice. It is more efficient to declare and
initialise once the data required becomes available.

1.4 Scope Qualifier

1.5 const

oucCs

#i ncl ude <stdi o. h>
i nt i = 0;
int main()
for (int i =0; i < 10; i++)
printf("%%d%d\n", i, ::i);
return O;
}

The program produces the following output:

N~ O

0
0
0

9 0
i referstotheloca variable, : : i refersto the global variable.
The keyword const can be used to freeze the value of an object. const objects will be
initialised (as their value cannot otherwise be set!). const can aso be used as a type

qudifier on function parameters to prevent accidental modification of the parameter within
the function.

2 April 1994

19.3/1

Programming in C++

void fred(const int Xx);
int main()
const int i = 15;
i nt j = 16;
i = 5 /1 illegal
fred(j);
return O;
}
void fred(const int x)
i X = 6; /1 illegal

When gpplying const to apointer we can indicate that the pointer should be unmodifiable,
or that the data pointed to should remain constant. The alternatives are given below:

const char *ptrl = "H"; [/ data pointed to is const

char *const ptr2 = "H"; /1l pointer is constant

const char *const ptr3 = "H "; /1 both pointer and data
/1

are constants

const objects can be used in array declarations, they cannot in C. The following is legal
C++, but illega C:

const int size = 10;
fl oat val s[si ze] ;

1.6 Explicit Type Conversion

April 1994

Used to convert avaue of one type to a value of another. Can be used as a replacement for
old style cast operators.

int main()

= (float) f * 6;
old style cast to float
- does cast refer to (f * 6) or just to f?

= float (f * 6);
new style cast to fl oat

[
/
/1l - clear what is being converted

/
/

return O;

3 oucCs

Programming in C++ 19.3/1

Type conversions of thisform can only be used when the type has a smple single name, that
is

str = char * (ptr);

isnot legd, but if a new type name is created with t ypedef , then the conversion will be
legal C++.

typedef char *string;

str = string(ptr);

1.7 Function Definitions and Declar ations

oucCs

C++ uses the same format of function definition as defined in the ANSl C standard. The
types of the parameters are specified within the round brackets following the function name.
C++ function declarations are used to provide checking of the return type and parameters
for a function that has not yet been defined. C++ declarations are the same as ANSI C
prototypes.

The advantage of using function declarations and the new style definitions is that C++ will
check that the type of the actuad parameters are sensible — not necessarily the same. Either
the types must be the same, or al the gpplicable standard and user defined type conversions
aretried to see if amatch can be found.

Some C++ implementations will not accept the old K&R declaration style at all.

4 April 1994

19.3/1

Programming in C++

doubl e m ni mum doubl e a, double b)
/1 Ct++ and ANSI C function definition

{
}

doubl e maxi mum(a, b)
/1 old fashi oned K&R for mat
doubl e a, b;

return a <b ? a: b;

{
return a >b ? a: b;
}
int main()
mnimum 1, 2);
/1 correct usage m ninmun(1l.0, 2.0);
/I C++ will convert 1 to 1.0 and 2 to 2.0
mnimum("hi", "there");
/1 non-sensical, C++ will conplain
maxi mum(1, 2);
/1 call traditional C function
/!l no errors - wong answer
maxi mum("hi ", "there");
/1 again no conplaints - strange results
}

Note that an ANSI C function declaration (where information about the parameters is
omitted) isinterpreted by C++ as a declaration of afunction that takes no parameters. For

example, the following declaration states that f r ed returns an i

nt and can take any

number of parameters of any type in ANSI C, whilst in C++ it declares a function that

returnsi nt and takes no parameters in C++.

int fred();

1.8 Overloading of Functions and Operators

April 1994

Several different functions can be given the same name. C++ will choose one of the
functions at compile time (but see 2.3.4.2 Virtual Functions), given the type and number

of parameters in the function cdl.

oucCs

Programming in C++ 19.3/1

Thefollowing pri nt functions print ani nt , astring and an array of i nt :

#i ncl ude <stdio. h>
#i ncl ude <string. h>

void print(int i)
/1 print an integer

printf("%\n", i);
void print(char *str)
/[l print a string

printf("%\n", str);

void print(int a[], int elem
/1l print an array of integers

for (int i =0; i <elem i++) printf("%\n", a[i]);
int main()

i nt i = 6;

char *str = "hello";

i nt vals[] ={ 1, 2, 3, 4};

print(i); [l call print(int)
print(str); [l call print(char *)
print(vals, sizeof(vals)/sizeof(int));

[l call print(int [], int)
return O,

}

It should be noted that there are better ways of handling printing of user defined typesin
C++ (namely oper at or <<, see section 1.15 and exercise 2.2.20...(2)).

1.9 Default Valuesfor Function Parameters

Functions can be called with fewer actual parameters than formal parameters. The
unspecified parameters are given default values.

void fred(int one, float two = 1.23, char three = 'c")

{
}

The arguments with default values must be the last parameters in the parameter list.

oucs 6 April 1994

19.3/1

Programming in C++

In this example, f r ed can then be called with 1, 2 or 3 parameters, e.g.

fred(6,7.2,'2");
fred(6,7.2);
fred(6);

When declaring functions that take parameters with default values, subsequent declarations
cannot specify the default values dready specified in earlier declarations, but they can add
new default values. When declaring a function before use, specify the default valuesin the
first declaration, e.g.

void fred(int one, float two = 1.23, char three = 'c¢');
int main()
fred(6, 7.2);

void fred(int one, float two, char three)

{
}

1.10 Name Mangling

April 1994

As it is possible to overload functions (e.g. in the example above there are three pri nt
functions) and as it is possible to use C++ with your existing linker, there must be some
mechaniam to generate aunique name for each overloaded function. Each function's name,
number and type of parameters are combined to produce a unique name. This processis
caled name mangling. Occasionaly name mangling is not required, one example islinking
with C code. To turn the mangling off, alinkage specification can be used when declaring
the C routines that will be used:

extern "C" void fred(int);

fred(int) will now nolonger be mangled. If the linkage specification is not used, and
fredisdedared asvoi d fred(int) anerror such asUndefi ned: fred Fi will be
produced when linking. f r ed_Fi isthe mangled name of voi d fred(i nt)

When a group of C functions need to be declared, they can be placed in a linkage
specification block:

extern "C' {
int printf(char *fm ...);
int scanf(char *fnt ...);
}
7 OuUCs

Programming in C++ 19.3/1

1.11 Functionswith a Variable Number of Parameters £

oucCs

Functions can be written which can take any number of parameters. It is now possible to
write your own equivaent of pri ntf . To write functions with a variable number of
parameters it is necessary to use the macros, va_st art and va_end, which are defined in
the header file, st dar g. h. Individual unnamed parameters can be obtained with the
va_ar g macro, or the vpri ntf range of print routines can be used to print a list of
unnamed parameters.

Thefirst of the following examples uses vf pri nt f to print the unnamed parameters, the
second extracts the unnamed parameters one by oneusing va_ar g.

#i ncl ude <stdi o. h> [l for fprintf
#include <stdlib.h> // for exit
#i nclude <stdarg.h> // for variable numof args nacros

void error(char *format ...)

{

va_list args;

va_start(args, format);
/1 make args point to first unnanmed paraneter

fprintf(stderr, "ERROR ");
/1l print start of error nessage

viprintf(stderr, format, args);
/[l print all unnaned argunents

fprintf(stderr, "\n");
/1l nmove onto new ine

va_end(args);
/1 tidy up

exit(1l);
// return to OS with exit status of 1
}
int main()
i nt i = -1;

error("invalid value % encountered", i);
return O;

! But you shouldn't! Use oper at or << instead (see section 1.15 and exercise
2.2.20...(2)).

8 April 1994

19.3/1

Programming in C++

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

voi d sum(char *nessage ...)
i nt total = O;
va_list args;
i nt arg;

va_start(args, nessage);

while ((arg = va_arg(args, int)) !'=0)
total += arg;

printf(nmessage, total);

va_end(args);

}

int main()
sum("The total of 1+2+3+4 is %d\n", 1, 2, 3, 4, 0);
return O,

}

We must make sure that the function knows which is the last actual parameter, otherwise
we may try to remove too many parameters from the stack. In the first example, we used the
vf printf function, which isthe pri ntf function to use in conjunction with avariable
number of arguments. Like pri nt f , the number of conversion characters must match the
number of extra parameters. In the second example a specia trailing vaue is used to
indicate the last parameter.

In ANS C the parameter list iswritten

func(named paraneters, ...)

That is a comma precedes the ellipsis (. . .).

1.12 Inline Functions

April 1994

Function definitions that are qualified with thei nl i ne keyword act like macros, that is, the
codeisinserted at each invocation of the function. However, unlike preprocessor macros,
i nl'i ne functions are much safer. Copies of the parameters are still taken and type
checking of the parameters is performed. Compilers are at liberty to ignore ani nl i ne
instruction, and many will do so for functions that are too long or complicated (each
compiler will haveits own idea about what this meandl). Also, if the address of the function
isever usad (perhaps assigned to a pointer), then the compiler will have to generate a normal
function (it is difficult to take the address of afunction that does not exist!), though this may
be in addition to the insertion of the code wherever the function is called.

9 oucCs

Programming in C++ 19.3/1

inline int strlen(char *str)
- .
i nt i =0,
while (str++ 1= "\0")
i ++;
return i;
}

1.13 new and delete Operators

new and del et e are used for dynamic allocation of memory space. They have a magjor
advantage over mal | oc and f r ee: constructors and destructors (see 2.2.4) for the objects
created or destroyed will be called.

There aretwo forms of newand del et e, depending on whether a single object or an array
of objectsis required:

new fl oat; for asinglef | oat
new float [num]; foranarayof fl oats

pf
pf

You should use the corresponding form of del et e when destroying the objects created with

new, i.e
del ete pf; for asingle object
delete [] pf; for an array of objects

This will ensure that the destructor is caled for each object in the array.

new returns O (NULL) on failure.

oucCs 10 April 1994

19.3/1

April 1994

Programming in C++

The following example program illustrates the use of new and del et e.

#i ncl ude <stdio. h>
int main()

i nt num chars;
char *nane;

printf("how many characters in your string? ");
scanf (" %", &um chars);

name = new char [num.chars + 1];
/1 allocate enough roomfor numchars characters
/1 + 1 for the "\O0

if (name !'= NULL) {
/1 do sonething with nane

delete [] nane;
/1 renmove name fromthe heap

}

return O;

}

It is possible to set up a function to handle out of memory errors when using new; the
function set _new_handl er (declared in new. h) isused to register the handler:

#i ncl ude <i ostream h>
#i ncl ude <new. h>

#i nclude <stdlib. h>
#include <limts. h>

voi d newError()
fprintf(stderr,"new failed: out of menory\n");
exit(1l);
int main()
char *ptr;
set _new_handl er (newkrror);

ptr = new char [ULONG_MAX];
return O,

}

This program sets up a handler that prints an error message and aborts the program if the
heap isfull.

11 oucCs

Programming in C++

1.14 Void Typet

oucCs

Functions can be declared as returning voi d, meaning they do not return avalue.

19.3/1

voi d can dso beused in the parameter list of afunction. C++ differs from ANSI C on the
meaning of afunction declaration with anull argument list, eg. fred() ; ,in ANSI Cthis
means that the function can take any number of arguments, in C++ it means that this
function does not take any parameters, i.e. C++'sfred(); isequivaent to ANSI C's

fred(void);.C++ acceptsfred(voi d); for compatibility with ANSI C.

The generic pointer typeisvoi d * asitisin ANSI C, but again there is adifference. C++
will dlow the assgnment of any pointer to avoi d * variable or parameter, but the reverse

aways requires acast. In ANS| C, both assignments are permitted without a cast.

void fred();
/1 A function that takes no paraneters and
/! does not return a val ue.

void *harry();
/1 A function that takes no paraneters and
/1l returns a pointer to void

void *jimvoid *);
/1 A function that takes a void * paraneter
/!l and returns a pointer to void

int main()
i nt i;
i nt *ptr2int;
fl oat *ptr2fl oat;
i = fred();
/1 illegal, fred does not return a val ue
fred(i);
/1 illegal, fred takes no parameters

ptr2int = harry();
/1l illegal, cast required for (void *) to (int *)

ptr2int = (int *)harry();
ptr2float = (float *)harry();
/'l OK, casts used

ptr2int = (int *)jinm(ptr2float);
/1 OK, no cast needed for pointer to anything to
/1 void *

return O;

12 April 1994

19.3/1

1.15 Stream Library

April 1994

Programming in C++

The stream library is used for a common interface to input and output routines across
built-in types and your own types.

There are three streams available (ci n, cout and cerr for standard input, standard
output and standard error streams respectively) and they are used in the following way:

#i ncl ude <i ostream h>

int main()
i nt i = 45;
fl oat f = 34.67
cout << i;
cout << f;

cout << "\ nEnter

cin >> i;

cout << i << f;

return O;

}

an integer: ";

8,

[l print i
[l print f

/1l print a string
/1l read an integer
/[l print i and f

A range of manipulators exist

to dlow formatting of output. [Remember that if all else

fails, pri nt f isdtill there!] Standard manipulators include:

oct

dec

hex

endl

ends

flush

ws

set base(int)
setfill (int)

set preci sion(int)

setw(int)

use octal

use decimal

use hexadecimal
newline (" \n")

end of string (" \ 0")
flush stream

SKip white space
use base specified
set fill character

set number of digits printed
set field width

Declarations for these manipulators areini omani p. h. For example:

cout << setw(8) << 1 << setw(8) << setfill ("#') << 2
<< endl;
cout << hex << 123 <<’ << oct << 123 << endl
prints:
1##H##HHH2
7b 173

13

oucCs

Programming in C++ 19.3/1

The set wmanipulator applies only to the next numeric or string value printed, hence the
need for two callsto set wabove. Theset fill manipulator modifies the state of the
stream, and will apply to all subsequent output on that stream.

1.16 References

1.16.1 Pointersvs. References

oucCs

Pointers in C++ operate in precisdy the same way as pointers in C. To declare a pointer, you
must state the type of the object that the pointer will point to, e.g. to declare avariablei as
being apointer toi nt :

i nt *i;

The pointer is then used in one of two ways: by making the pointer point to some already
existing data; or by making the pointer point to some currently unused memory and then
storing data via the pointer. Examples of both methods are given below:

i nt i = 10;
i nt *ptr2int;

ptr2int = & ; /1 make ptr2int point to i

*ptr2int = 20; /1 change the value of i

ptr2int = new int; /1 ask for enough menory to
/1 store an integer

cin >> *ptr2int; /!l store data in this newy

/1 al | ocated nmenory

The* and & operators are more or less the opposites of each other. & is used to generate a
pointer, and * is used to follow a pointer to find what is at the other end. The opposite
nature of the two is shown by the fact that * & isthe sameasi (given the declarations
above), but & i isnot legal asyou are attempting to treat i as a pointer.

References are ways of introducing a new name for an existing object. References must be
initialised to refer to some existing object, and this cannot be changed! For example,
consider the code below:

i nt i
int& k

[/! k refers to i, i.e. k
/1 is an alias for i

cout << setw(2) << i << j << k; [/ prints " 12 1"
k =j; /1 assigns 2 to i
cout << setw(2) << i << j << k; [/ prints " 2 2 2"

Note that the assignment to k did not make k refer toj , instead it modified the vaue of the
object that k referred to.

14 April 1994

19.3/1 Programming in C++

1.16.2 Reference Parameters

References are aso sometimes used as parameters to functions. In this case, the
initialisation of the reference takes place when the actual parameters are copied into the
formal parameters, e.g.

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>
void fred(int i, int&j)
i = 3; /1 assign to a local copy of the
/1 first argunent
j =4 /1 nmodify variable in caller's scope
}
int main()
i nt a=1 b =2
cout << setw(2) << a << b; // prints "1 2"
fred(a, b);
cout << setw(2) << a << b; // prints "1 4"
return O,
}

Needless to say, references are actually implemented using pointers!

1.16.3 Functions Returning References

Functions can return a reference to an object, but make sure that the reference isnot to a
local object that will be destroyed when the function terminates.

The following function returns a reference to a character within the string parameter.

#i ncl ude <i ostream h>
char& strchr(char *str, char c)
while (*str !'="'\0" && *str != ¢)

str++;
return *str;

}

int main()
char s[] = "hello world";
strchr(s,'1") ="'2

cout << s;
return O;

}

The program should print hezl o wor | d.

April 1994 15 oucCs

Programming in C++ 19.3/1

1.16.4 References and const

const references can beinitialised with non-const objects; the object referred to will not
be modifiable through the reference. Plain references cannot be initialised with aconst
object, as that would alow aconst object to be changed.

- .
I nt =1,
const int i = 2
const int& k =i; Il K
int& I =7j; /1 illega
k = 3; /1l illegal, even though reference is
/! to i which is not const

1.17 Exercises

D)

(2)

oucCs

Write afunction that will print an unsi gned i nt inany given number base. If the base
is omitted then the base should default to 10. To print the number use the following
recursive algorithm (n is the number to print and base is the base):

if (n>0) {
print(n / base, base);
cout << n % base;

}

Of course this will only work for base < 10.

Write afunction that will swap itstwo doubl e parameters. Use reference parameters. Test
with the following program:

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

int main()

doubl e x =1.2, y=1.3;

cout << x << ' ' <<y << endl
swap(Xx,y);
cout << x << ' ' <<y << endl
return O;

16 April 1994

19.3/1

Programming in C++

2 Object Oriented Programming
2.1 Rationale

April 1994

C++ dtarted life as “C with classes’. A class contains the data and the operations needed
on the data, and so the class defines the interface to the data. Classes permit the definition
of abstract data types (ADTSs) in asimilar way to the packages of ADA and the modules
of Modula-2. If theinterface to the object is well designed then all the details will be within
the class, making it easier to identify code that is accessing the data incorrectly. Thisis part
of way to an object oriented programming language (OOPL).

For a programming language to fully support OOP it should aso support inheritance and
polymor phism.

inheritance defining a class in terms of another; adding features to the existing
class

polymorphism applying the same operation to objects of different classes (but each
must be in the same family, derived from a common base class), the
behaviour will be different, even though the operation is the same

The classic example of inheritance and polymorphism is that of shapes in a graphics library.
A base class, shape, stores the colour and location, and new classes are derived from the
base classinheriting the common fegtures of al shapes. If any shape is asked to draw itsdlf,
the behaviour will be different (circles and squares look different) even though they are
undergoing the same operation; this is polymorphism.

Much work is being done in the fields of object oriented analysis (OOA) and object
oriented design (OOD), but unfortunately this is beyond the scope of this course (and
possibly beyond the capabilities of the author!). However, the following rules of thumb for
object oriented programming in C++ from Stroustrup [1] will suffice:

— If you canthink of “it” as a separate idea, make it aclass (see 2.2).

— Ifyoucanthink of “it” asa separate entity, make it an object of some class (see 2.2.3).

— If two classes have something significant in common, make that commonality a base
class (see 2.3.1).

— If aclassisacontainer of objects, make it atemplate (see 3).

Deriving acdass from another (inheritance) and including a class object within another are
often referred to asis-a and has-a relationships. In C++:

isa publicly derived from another class
has-a implemented in terms of; either has a class object as amember or is privately
derived from another class

For example, a Ford Mondeo is-a car, and a car has-a engine (sorry about the grammart).

Therefore, engi ne could beamember of car , and For dMbndeo could be publicly derived
fromcar.

17 oucCs

Programming in C++ 19.3/1
2.2 Classes
2.2.1 TheClassConstruct

A class definition gives the data and the operations that apply to that data. The data can be
private, public or protected (see 2.2.8) enabling data hiding and construction of Abstract
Data Types (ADTS).

oucCs 18 April 1994

19.3/1 Programming in C++

An example of asimple class is given below:

#i ncl ude <i ostream h>
#i ncl ude <string. h>

class string {

char *str;
publi c:
string() /1 default constructor, takes
/1 no paraneters
{
str = NULL;
}

string(const char *s)
/1 constructor with “char *' argunent
{

str = new char [strlen(s) + 1];
strcpy(str,s);

string(const string& t)
/1l copy constructor, takes a reference
/1 to another string as the paraneter

{
str = new char [strlen(t.str) + 1];
strcpy(str,t.str);

~string() /1l destructor

delete [] str;

void print() const
/1l print a string

{
cout << str;
}
b
int main()
string sl; /1 use default constructor
string s2("hello world");
/1 use constructor with “char *' argunent
string s3(s2);
/1l use copy constructor
/1 print the strings
sl.print();
s2.print();
s3.print();
return O,
}

Note that the class definition is terminated with a semi-colon.

April 1994 19 oucCs

Programming in C++ 19.3/1

Members of the class (whether data or functions) are assumed to be in the private section,
unless stated otherwise.

2.2.2 Structures

2.2.3 Objects

Structures are smilar to classes, but the default is for members to be public rather than
private. Therefore structures can contain both data and functions.

An object is an instance of aclass. For object read variable!

Every time we define a variable we get a new object which has al the properties of the
associated class. Thisisthe same as with the built-in types of C (f | oat , i nt etc.) — they
have certain properties (range of values, operations etc), the bonus is that we can make up
our own as well!

2.2.4 Constructorsand Destructors

oucCs

Constructor methods are caled when an object is created, destructor methods are called
when the object is destroyed. For automatic objects this will be on entry and exit from the
block in which the object is defined. Congructors are frequently used for memory allocation
and initialisation, destructors could be used for deallocation of storage in a data structure.

For aclass called st ri ng, the constructor is caled st ri ng and the destructor is called
~string.

Condtructors cannot return avalue, but it is also invalid to declare them as returning voi d.
Severa constructors can be specified, aslong as they have different parameter lists.
A congructor that takes no parameters is caled the default constructor, and a constructor

that takes an object of the same class as its parameter is called the copy constructor.

The copy constructor takes a reference to an object of the same class. So that const
objects can be used as an initialiser, the parameter should be declared to be const .

class string {

char *str;
publi c:
string() {} /1 default constructor

string(const string& s) {}
/1 copy constructor
~string() {} /| destructor

20 April 1994

19.3/1

Programming in C++

If a constructor can take parameters, then the parameters can be specified using the
following syntax:

string s(paraneters);

There are dso two methods of calling the copy constructor after having first constructed a
new temporary object:

string s = string(paraneters);
or the abbreviated form:
string s = paraneter;

For example, the following are all valid ways of initialising astri ng using achar *

initialiser; thefirst uses a constructor that takesachar * parameter, the others use the
char * constructor to create a new object, and then use the copy constructor to initialise
the object:

string s1l("one");
string s2 string("two");
string s3 "three";

The copy congtructor is used for passing parameters by value; constructors are also needed
when returning values from functions.

string search(const string s, char c)

{
}

return string(strchr(s.str,c));

[For the above function to work it would have to be declared to be afri end of the
stringclass, see2.2.14]

When thesear ch function is caled, the argument is copied and anew st ri ng cr eat ed
using the copy constructor to initialise it. When the stri ng vaue is returned from
sear ch,agananew st ri ng is created, but this time the constructor used is the one that
takesachar * parameter.

2.2.5 Member Functions

April 1994

Member functions are functions that are defined or declared within the body of a class
definition. They form part of the class description. Member functions are normally used to
provide operations on the class data. Asthey form part of the class definition, each instance
(variable) of the class will have associated with it the operations defined within the class.
By making the functions that modify or read the data contained in the class member
functions we know that any code that sets or reads the data incorrectly must be within the
classitsalf. This helps debugging and makes it easier to produce abstract data types.

Member functions are aso referred to as class methods.

21 oucCs

Programming in C++ 19.3/1

If the code for amember function is defined within the class, then that member function will
betrested as an inline function (see 1.12); more normally the member function is declared
within the class and defined elsawhere. The scope resolution operator, : : , is used to specify
the class to which the function belongs.

An alternative way of defining the pri nt method from the st r i ng class shown above
would be:

class string {
private:
char *str;

publi c:

constructors and destructors

/! declare the print nethod
void print() const;
b
/! define the print method
void string::print() const

{
}

cout << str;

2.2.6 Operatorsas Member Functions

oucCs

Itis possible to define operators for classes. These operators can be infix binary operators
or unary operators. Itisonly possible to define operators that use an existing C++ operator
symbol, and the precedence of the symbol cannot be changed. There are some operators
that cannot be defined, these are;

Lx Dl ?: sizeof # Hit

Unary operators are defined as a member function taking no parameters, binary operators
are defined as member functions that take one parameter — the object on the right hand side
of the operator.

When defining an assignment operator (oper at or =) aways declare it to take areference
to the object on theright hand side of the assignment operator and return areference to the
object on the left of the operator; thiswill permit assgnmentsto be chained (a = b = c;).
Also declare the parameter (the object on the right of the operator) to be const to prevent
accidentd modification and aso to permit const objects to be used on the right hand side
of the assignment operator.

22 April 1994

19.3/1

April 1994

Programming in C++

class string {

char *str;

publi c:

string& operator= (const string& rhs)

/1 delete the current string
delete [] str;

/1 allocate enough room for the new one
str = new char [strlen(rhs.str) + 1];

/1 copy in the string
strcpy(str, rhs.str);

return *this; // see 2.2.12
}

23

oucCs

Programming in C++

oucCs

The following shows a concatenation operator for thest ri ng class:

19.3/1

#i ncl ude <i ostream h>
#i ncl ude <string. h>

class string {
private:
char *str;

publi c:

constructors and destructors as before
string operator+ (const string& rhs) const
char *s;

/1 create a new C style string holding
/1 the concatenated text

s = new char [strlen(str)+strlen(rhs.str)+1];
strcpy(s,str);

strcat(s,rhs.str);

/1 style string
string newstring(s);

/!l delete the C style string, no | onger needed
delete [] s;

/1l return a copy of the newly created string
return newstring;

}
void print() const
{
cout << str;
}

/] create a new “string', initialising it with the C

This operator can then be used in two different ways (assuming that an assignment operator

has also been defined; see exercise 2.2.9...(2)):

int main()

string s1l("hello");
string s2("worl d");
string s3, s4;

s3 = sl.operator+(s2);
s4 = sl + s2
return O,

}

cfront 3 (see 6) introduced a mechanism for defining both prefix and postfix ++ and - -

operators, until then only postfix was possible.

24

April 1994

19.3/1

Programming in C++

class X {
X& operator++() { } [l prefix
X& operator++(int) { } // postfix

}s

Thei nt argument of the postfix operator is a dummy parameter used only to distinguish
the two operators.

2.2.7 Default Member Functions

All classes get the following three default member functions:

Xt X() default constructor

X:: X(const X&) copy constructor (bitwise copy)

X:: operator=(const X& assgnment of another object of same class (bitwise
copy)

Thetype of the argument to the copy constructor isconst X& if either there are no object
members or al object members of X have copy constructors that accept const arguments,
otherwise the typeis X& and initialisation by aconst objectisillegal. The sameistrue of
the assignment operator.

The copy congtructor and assignment operator perform a bitwise copy member by member
into the new object.

2.2.8 Access Specifiers

April 1994

Accessto class membersis controlled by the access specifiers pri vat e, pr ot ect ed and
publi c.

private can only be used by member functions

protected can only be used by member functions and by member functions of
derived classes (see 2.3.1)

public can be used by anyone! Functions and data that you wish to be
exported/published should be placed in the public section

Multiple private (or protected or public) sections are permitted. In classes any unmarked
sections are deemed to be private, in structures they are assumed to be public.

class X {

char *s1; /] private
publi c:

char *s2; /] public
private:

char *s3; /] private
1

25 oucCs

Programming in C++ 19.3/1

2.2.9 Exercises
(D] Using enumerated types define a class dat e, which can be initidised by writing:
date d(Mon, 13, Nov, 1989);
Write methods for: constructor (used as above), copy constructor and printing.

The enumerated types for the day and month will need to be visible outside of the class to
make the initialisation above possible, therefore make the two enumerated types global.

2 Add an append operator (operat or+=) to the string class in the example file
string. cpp.

2.2.10 Methodsand M essages

In the jargon of OOP the functions defined in a class are called methods. Methods are
invoked by sending an object a message.

In the string example given above we used the statement:
s4 = sl + s2;

This actually involves sending the following messages to the following objects

Object M essage
sl + s2
s4 = result of above

oucCs 26 April 1994

19.3/1 Programming in C++

More normally in C++ (the above example uses infix operators) the syntax for passing a
message to an object will be

obj ect. net hod(other_info,...);
e.g.

x.times(3); /1 multiply x by 3
Thefull form of the statement s4 = s1 + s2; is

s4. operator=(sl. operator+(s2));

2.2.11 Order of Evaluation

The order of evauation in expressions is determined by the precedence of the operators used
(just asitisin C). Note that, whilst aprogrammer can define functions that act as operators,
they cannot change the precedence or associativity of that operator. In the following
example, evauation will proceed from left to right:

Z =a+b+c;

A new temporary object will be cregted to hold thevaue of a + b, this new object will then
receive the message to add itself to ¢. Once the vaue has been assigned to the object z, the
temporary variable will be destroyed.

2.2.12 Thelmplicit Argument —this

When an object recelves amessage we can use the reserved word t hi s to gain access to the
object itsdlf. t hi s isapointer tothe object, so *t hi s isthe object itself. For example, the
following function returns a reference to the object that received the message:

conpl ex& operator=(const conpl ex& rhs)
/1 assignnment
{
real = rhs.real; /1 assign to private data
img = rhs.inmg; /1 assign to private data
return *this; /1l return the object
}

April 1994 27 ouUcs

Programming in C++ 19.3/1

t hi s can also be used in oper at or = to prevent unnecessary, or even destructive?,
assignment when the same object is on both sides of the assignment operator, e.g.

conplex a;

conpl ex& b = a; /1 b refers to a
a = a;

a = b;

Both of the assignments above involve an assignment back to original object. This can be
prevented by comparing pointers to the two objects, if they are the same, then the objects
are the same:

conpl ex& operator=(const conpl ex& rhs)

if (& hs !'=this) { // conpare pointers to rhs
/1 and ourselves

assign to private data

return *this;

2.2.13 const members

Member functions that have the qualifier const after their parameter list are not able to
modify the data stored within the class unlessthe const is*cast away”. Thisiseasier to
explain with an example:

2When assigning to ast r i ng object (section 2.2.6) the code deleted the current string,
and then made a copy of the string on the right hand side of the operator. If the same object
gppears on both sides of the operator, then the string will be destroyed without a copy being

kept!

oucCs 28 April 1994

19.3/1

April 1994

Programming in C++

cl ass conpl ex {
doubl e real, img;

publi c:
void tom() const

real = 1.0; /1 illegal
}

voi d dick() const

((complex *)this)->real = 1.0;
[l K
}

voi d harry()
{

real = 1.0; Il K
}

}s

const member functions can be called for both const and non-const objects, non-
const members can only be caled for non-const objects. In fact, this can be used to call
different functions for const and non-const objects, e.g.

class string {
char *str;

publi c:

const char& operator[](int index) const
/1l operator[] for const objects
/1l returns a ref to a constant char

{
}

char & operator[](int index)
/1l operator[] for non-const objects
/1l returns a ref to a char

return str[index];

{
return str[index];
}
b
int main()
const string s1l("hello");
string s2("worl d");
s1[0] = "'z'; // calls first operator[], and is illega
/1 as we're trying to nmodify through a
/1l const reference
s2[0] = "'z"; /1 calls second operator[], and sets the
/1 first character of s2 to 'z
return O,
}
29 OuUCs

Programming in C++ 19.3/1

The attempt to modify the first character of s1 will fail, as a reference to a constant
character is returned.

2.2.14 Friends

Functions and other classes can be declared to be friends of a class, they can then access
private data and private functions of the class specified.

2.2.15 Operators— Member Function vs Global Function

Binary operators are often defined as a global function accepting two parameters. [If the
function needs to access private members of the class, then it will also need to be declared
to be afriend of the class.] This is done in cases where it is not possible to modify the
source code for the class that the function would normally need to be a member of. A good
example of thisisthe definition of a stream output operator. It is not possible to modify the
code for the stream classes, so instead we overload the operator << further by defining a
function called oper at or << with two parameters, and make it af ri end of the class we
are working on. See exercise 2.2.20...(2) below.

binary operator
member one parameter

globa two parameters
unary operator

member no parameters

globa one parameter

As member functions have one implied argument (the object receiving the message),
member functions used as infix operators have one less parameter than a non-member
function that is declared to be af ri end. For example:

oucCs 30 April 1994

19.3/1

April 1994

Programming in C++

cl ass conpl ex {
doubl e real, img;

public: /1 everything below is public
conpl ex(double re = 0.0, double im= 0.0)

real =re; imag = im

}

/1 method decl arations

conpl ex operator +(const conpl ex&) const;
friend conmpl ex operator-(const conpl ex& const conpl ex&)
conpl ex operator=(const conpl ex&)

b
/1 conpl ex nmethods

conpl ex conpl ex:: operator+(const conpl ex& arg) const
/1 menmber function

{
}

conpl ex operator-(const conpl ex& argl, const conpl ex& arg2)
/1 global friend function

{
}

conpl ex& conpl ex: : oper at or =(const conpl ex& rval ue)
/1 menmber function

return conplex(real + arg.real, imag + arg.inag);

return conpl ex(argl.real-arg2.real, argl.inag-arg2.inag);

{
real = rval ue. real
i mag = rval ue.i mag;
return *this;
}
int main()
conplex a,b,c;
a=»>b+c; /1 uses nmenber function operator+
a=»>b- c; /1 uses a global function
return O,
}

Globd functions can aso be used to reduce the number of member functions needed, as the
compiler will use constructors to cast parameters to the correct type if adeclaration for the
function exists. For example, consider dealing with the following expression:

a+b

wherea and b could be dther of integrd or floating point type or of our own type conpl ex.
Using member functions, then wewould not be able to deal with the situation where a is not
complex, the object recelving the message would need to be conpl ex. This restriction does
not apply to global functions. Also using an ordinary function we need only write one

31 oucCs

Programming in C++ 19.3/1

function to cope with al the above circumstances, one where both the parameters are of type
conpl ex, that is:

conpl ex operator+ (const conpl ex& argl, const conpl ex& arg2);
If we have aconpl ex constructor that can form aconpl ex from an integer or floating

point value (and we do!) then values of these types will be promoted to type complex (using
the constructor) automatically.

2.2.16 static Class Data

For st ati c data only one copy per class instead of one copy per object will be stored.
st ati c dataisinitialised outside of the class.

The following code shows a class where arrays of values are shared between all instances
of the class.

oucCs 32 April 1994

19.3/1

Programming in C++

enum day { Mon, Tue, Wed, Thu, Fri, Sat, Sun };
enum nonth { Jan, Feb, Mar, Apr, My, Jun,
Jul, Aug, Sep, Cct, Nov, Dec };

class date {
static char *days[7];
static char *nonths[12];
static int dayspernonth[12];

publi c:

/! declaration of constructor
date (day aDay = Mon, int abDate = 1,
nonth aMbnth = Jan, int aYear = 1900);
1

char *date::days[] = {

"Monday",
"Tuesday",
"Wednesday",
"Thur sday",
"Friday",

" Sat ur day",
" Sunday"

i

char *date::nmonths[] = {
"January",
"February",
"March",
"April",
"May"
"June",
"July",
"August ",
" Sept enber ",
"Qct ober ",
"Novenber",
"Decenber"

i

i nt date::dayspernonth[] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

2.2.17 Conversions

April 1994

Classes can dso have member functions that convert an object into a value of another type.
For example, conpl ex might have an oper at or doubl e() conversion method that
returns the red part of the complex number. Such an operator will be used wherever an
explicit cast operator is used, but also when needed to match with function declarations.

33 oucCs

Programming in C++

19.3/1

#i ncl ude <mat h. h>

cl ass conpl ex {
doubl e real ,imag;

publi c:
/1 other menbers as above
oper at or doubl e()

return real

}
b

voi d main()

conmplex ¢(1.0,2.0);

doubl e d;

d = double(c); // assign real part to d

d = exp(c); /!l calc e raised to power of real part
/1 c has been converted to double

2.2.18 ClassObjectsas Members

Classes can have members which are objects of another class, e.g.

class fred {
conpl ex c;

publi c:
/1 constructor, declaration only
fred(double re = 0.0, double im= 0.0);

/'l destructor

~fred() {}

/1 print
void print() {}

}s

When initialising an object member, there are two methods:

— assignment
— member initialisation

oucCs 34

April 1994

19.3/1

April 1994

Programming in C++

/1 use assignnment to initialise the conplex nenber
fred::fred(double re, double im

{
c = conplex(re,im;

/] use nmenmber initialisation to initialise
/1 the conpl ex nunber

fred::fred(double re, double im : c(re,im { }

[Remember that these two constructors are alternatives, they cannot coexist. |

With the first method:

— the complex member isinitialised with the default constructor of class conpl ex

— atemporary conpl ex object is created and initialised withr e and i m

— the complex assignment operator (oper at or =) iscalled

With the second method:

— the complex member is initialised using the conpl ex constructor that takes two
doubl e arguments

Therefore the second method is usualy preferred, it is much more efficient.

Note that the second method is the only method that can be used with const members.

35 oucCs

Programming in C++

2.2.19 An Example Class— Complex Numbers

19.3/1

#i ncl ude <i ostream h>
#i ncl ude <math. h>

/1 conpl ex declaration

;; type conpl ex
;; - is an inline function
real =re; imag = im
conpl ex(const conpl ex& ot her conpl ex)
/1 Constructor #2, copy initialiser
22 its argument

- inline function

}

oper at or doubl e() const
/'l conversion into a double
{

}

/1 method decl arations

return real

conpl ex& operat or=(const conpl ex&)
assi gnment

~~
~~

/1 and finally, our friends

friend conpl ex operator+(const conpl ex&,
/1 addition
/1l - takes two references to conplex
/1 - returns a conpl ex nunber

nd conpl ex operator-(const conpl ex&,
/1 subtraction

/1l - takes two references to conplex
/1l - returns a conpl ex nunber

}; // class description ends

class conpl ex { /1 conpl ex nunber
/1 class description
doubl e real, img; /1l this is private
public: /1 everything belowis public

conpl ex(double re = 0.0, double im= 0.0)
/1l Constructor #1, definition function
- used to allocate nmenory for variabl es of

- uses paraneters with default val ues

- takes a reference to another conpl ex nunber as

real = otherconplex.real; imag = otherconpl ex.img;

- takes a reference to a conpl ex nunber
- returns a reference to a conpl ex nunber

const conpl ex&)

nunbers

const conpl ex&)

nunbers

continued...

oucCs 36

April 1994

19.3/1

April 1994

Programming in C++

...continued

/1 conpl ex nmethods

conpl ex& conpl ex: : oper at or =(const conpl ex& rhs)
/1 assignnment

real = rhs.real
img = rhs.inmag;
return *this;

}

/'l friends

conpl ex operator+(const conpl ex& | hs, const conpl ex& rhs)
/1 addition

{
}

conpl ex operator-(const conpl ex& | hs, const conpl ex& rhs)
/1 subtraction

return conplex(lhs.real + rhs.real, |lhs.img + rhs.inmag);

{
return conplex(lhs.real - rhs.real, lhs.img - rhs.inmg);
}
int main()
conmplex a;
/1 declaration & definition of a conplex nunber
/1 uses definition function (constructor #1)
/1 will be initialised to 0 +1i0
conplex x(1.0,2.0), y(20.0), z(11.0,12.0);
/1 use definition function
compl ex u(x);
/1 uses copy initialiser function
conplex v = Xx;
/1 uses copy initialiser function
/[l it is identical to definition of u above
conplex w=x +vy - Zz;
/1l uses copy initialiser function, after
/1 producing a tenporary unnaned vari abl e
/1 holding the result of x +vy - z
a=x+y - z
/1l use overl oaded operators
/1 uses +, - & = functions above
cout << double(a) << endl
/1 use the doubl e conversion operator
cout << exp(a) << endl
/1l print e to the power of the rea
/1l part of a; uses the double conversion
/1l operator
return O,
}

37 oucCs

Programming in C++ 19.3/1

2.2.20 Exercises

D)

(2

3)

(4)

The modulus of acomplex number z, where z is x+iy, iswritten as |z and is given by

l2l=yx%+y?

Make a copy of the example file conpl ex. cpp in your own directory, and add a nod
method to the conpl ex class that returns the modulus of the complex number asadoubl e
value.

Add aprint routine to the conpl ex class. Use agloba friend function; add the following
declaration to the class definition:

friend ostream& operator<< (ostream& stream conplex& c);

and then use the following outline for the function itself; which will appear outside the class
definition:

ostream& operator<< (ostream& stream conplex& c)

{
}

Thefilest ack. cpp contains the bare bones of a stack class definition. Make a copy of the
file and then complete the definition.

Thefilesl i st. handl i st. cpp contain aclass which implements alinked list of objects
of any class derived from Cbj ect in the Borland class library. Use them to construct a
linked list of names. Use Borland's St ri ng class to store the strings. The example file
usel i st. cpp gives asolution to this exercise.

Thel i st. cpp program isloosely based on an example program in An Introduction To
Object Oriented Programming And C++ by Wiener & Pinson.

2.3 Inheritance and Polymor phism
2.3.1 Derived Classes

oucCs

It is possible to derive classes from existing ones. The derived class inherits all the features
of the existing base class, and can then add new features.

The main programming benefit from deriving classes are code reusability and ease of
maintenance.

Reusability A linked list base class can be used in many different situations, al of
which require dight changes to the feature list. For example, we might
use the linked list class to derive classes that handle stacks, queues
etc. We are automatically reusing the code from the base classin all
of the derived classes.

38 April 1994

19.3/1

Programming in C++

Maintenance After we have coded and debugged a class, unless there are
extenuating circumstances we would normally leave the class adone.
If werequire a class that behaves dightly differently then derive a new
classfrom the old one. This alows us, at last, to follow the adage “if
it ain't broke don't fix it”!

Inheritance also pays huge dividends in the area of libraries. Normally we do not have the
source code for the library functions. If we want to alter a class to fit our own needs we can
derive a class from the library class adding extra features, or overriding functions as

necessary.

2.3.2 Deriving a New Class

There are three ways of deriving anew class from a base class:

class derived : public base {};
class derived : private base {};
class derived : protected base {};

The difference between these declarations are:

public base public members of base become public members of derived,
protected members of base become protected members of
derived

private base publicand protected members of base become private members
of derived

protected base public and protected members of base become protected
members of derived

If the specifier publ i ¢, pri vat e or pr ot ect ed isomitted then pri vat e isassumed for
classes and publ i ¢ isassumed for structures.

There is no way for the derived class to get its hands on the private data or member
functions of the base class.

2.3.3 Derived Classes; Constructorsand Destructors

April 1994

Congructors and destructors are not inherited (see Stroustrup r.12.1 and r.12.4). However,
if abase class has a constructor then that constructor will be called before the constructor
of the derived class. The same holds for destructors, except that the base class destructor
is called after that of the derived class. [See Stroustrup r.12.4]

Base classes behave (in this respect) like members of the derived class. The constructor of

the base class is called, or if it requires parameters these can be specified in the following
way:

39 oucCs

Programming in C++ 19.3/1

cl ass base {
i nt I

publi c:
base(int i) { I =1i; }

b

class derived : public base {
i nt J;

publi c:

derived(int i, int j) : base(i) { J =j; }
}i:

Thefirst argument to the constructor of der i ved is passed on to the constructor of base.

For example, a 3-D point may be derived from a 2-D point. The 3-D point will inherit the
x and y vaues of the 2-D point and will add a z coordinate. The constructor for a 3-D point
can use the 2-D constructor, and then concentrate on what is different between a 3-D point
and a2-D one.

cl ass 3Dpoint : public 2Dpoint {
doubl e Z;

publi c:

/'l constructor
3Dpoi nt (double X = 0.0, double Y = 0.0, double Z = 0.0)

2Dpoint (X, Y)

2.3.4 Virtual Functionsand Polymorphism

2.3.4.1 Polymorphism

If the same function can be applied to objects of different types then that function is
polymorphic. Whilst polymorphism could be implemented in C using a function that takes
apointer to the object to use, in C++ the process is usually implemented by having member
functions of the same name in several classes.

2.3.4.2 Virtual Functions

oucCs

Virtual functions can be used when amember function is called through a pointer of the type
pointer to a base class. Thefunction caled will be the function of that name in the derived
class, even though the pointer is declared as a pointer to the base class. The following
example illustrates the difference between a norma member function and one that is
declared to be virtual.

40 April 1994

19.3/1

April 1994

Programming in C++

#i ncl ude <i ostream h>
cl ass shape {
publi c:
virtual void draw() { cout << "draw shape\n"; }
void paint() { cout << "paint shape\n"; }
b
class square : public shape {
publi c:
void draw() { cout << "draw square\n"; }
void paint() { cout << "paint square\n"; }
1
class circle : public shape {
publi c:
void draw() { cout << "draw circle\n"; }
void paint() { cout << "paint circle\n"; }
b
int main()
circle C;
square S;
shape *ptr;
ptr = &c; /1l pointer to derived is conpatible
/1 with pointer to base
ptr->draw(); /! which draw met hod do we get?
/1 ans: circle's draw
ptr->paint(); // which paint nmethod do we get?
/1 ans: shape's paint
ptr = &s;
ptr->draw(); /1 call square's draw
ptr->paint(); [// call shapes's paint
shape *shapes[10];
/! declare an array of 10
/1l pointers to shape
shapes[0] = new square;
shapes[1l] = new circle;
/1 set shapes[0] to point to a square
/1 and shapes[1l] to point to a circle
for (int i =0; i < 2; i++)
shapes[i]->draw();
/1 call the draw method of the appropriate
/1 derived cl ass
return O,
}

Virtual functions require late binding, we don't know until run time which method will be
called. Until now, even with function and operator overloading the decision over which
function or method to call is made at compile time, there is no run-time overhead without
virtual functions.

41 oucCs

Programming in C++ 19.3/1

2.3.4.3 Pure Virtual Functionsand Abstract Base Classes

Have no body e.g.

virtual void drawm) = O;

Derived classes must redefine this method, overriding this function.

Classes containing one or more pure virtual functions are called abstract base classes. It
is not possible to create objects of an abstract base class, instead they are used as base
classes from which to derive new classes. For example, using the example classes in
2.34.2, shape could beturned into an abstract base class. Thiswould prevent declaration
of shape objects. Pointers to abstract base classes (in this case shape) are permitted, so
the rest of the code in the shape program would not have to be changed.

2.3.4.4 Virtual Destructors

If you are likely to access derived class objects through a pointer to the base class (asin the
shape example in 2.3.4.2) then the destructor of the base class should be declared to be
virtual. That way, when objects are destroyed through the pointer the destructor of the
derived classis called rather than the base class destructor.

2.3.5 Exercises

oucCs

D)

(2

Using the example program shapes. cpp, derive a class filled_rect using
rectangl e as the base class. The congtructor for filled_rect should cal the
r ect angl e's constructor. Modify the main program so that some filled rectangles are
drawn. You can use the oucsgraph graphics library function fi | | Rect angl e to draw the
shape.

Deriveaclassst ri ng fromthe St ri ng classin the Borland class library. This new class
should declare an oper at or << function as a friend, and you should then define this
function. Thiswill dlow st ri ngsto be printed using:

cout << str;
instead of using the St r i ng method pri nt On, i.e.
str.printOn(cout);

It will be necessary to define a constructor that takes aconst char * parameter and
smply passesthisvaue onto the St ri ng constructor. A copy constructor will be provided
for us by C++.

To use the String class from the Borland class library you should #i ncl ude

<strng. h>andlinkintcl asss. i b (you will need to create a project file to do this).
You may aso need to change the directories that Turbo C++ searches for include files and

42 April 1994

19.3/1

3)

(4)

April 1994

Programming in C++

libraries (this has been done for you on the system used during the course). Select the
directories option of the opt i ons menu and change the directory paths to the following:

Include directories. c: \ bor| andc\i ncl ude; c: \ bor| andc\ cl assl i b\i ncl ude
Library directories: c:\ borl andc\lib; c:\borlandc\classlib\lib

Use inheritance to define astack class in terms of thelist class used in exercise 2.2.20...(3).
Define put and get operations to add and remove items from the stack.

The following exercise comes from Advanced Programming and Problem Solving With
Pascal by Schneider & Bruell.

Consider the following problem. You are given a stack and asked to reverse its
contents, asin the following example.

Top-> 5 Top-> 68
15 19
35 7
2 2
7 35
19 15
68 5
@ (b)

How would you accomplish this task? An elegant solution (although it requires
more storage than is actually needed) employs a queue. You simply pop off
elements of the stack one at atime and enqueue them (put). Then degqueue (get)
the elements one at atime and push them onto the stack.

Write a program that creates an instance of a queue and a stack (Queue and St ack from
the Borland class library). The program should then read integers until a0 is entered. Each
integer should be pushed onto the stack. This should leave you in position (&) above. The
program should then pop al the entries from the stack and put them in your queue. You
should then be ableto get dl theitems from the queue and push them back onto the stack.
The program should then print the contents of the stack, which should be the numbers you
entered in the order that you entered them.

[Note that you will need to define an | nt eger class (say) that is derived from Obj ect .
]

43 oucCs

Programming in C++ 19.3/1
3 Templates

oucCs

Asweve seen through the course, it pays to make functions and data structures as generic
as possible. It would be a great shame if we had to write one set of code for a stack of
integers and another for a stack of floats.

We've also seen two ways of achieving this.

Thefirst is only to store pointers to our data in the data structures we create. By using the
typevoi d * wecan subsequently store pointers to anything. The mgjor problem with this
approach is that we need to remember what kind of object the pointer was pointing to so
that we can convert the pointer back to the right type when we remove data from the data
structure. For example, if we coded a stack using generic pointers, then we would need to
do the following when using push and pop:

stack s;
float *p;

p = new fl oat;
*p = 45.1;
s. push(p);

p = (float *)s.pop();

The second technique isto make use of the fact that pointers or references to a derived class
are type compatible to pointers or references to the base class. Thisis used to great effect
in the Borland class library, where anything that is derived from Obj ect can be stored in
one of the data structures available in the library. In fact, different types of objects can be
stored in the same stack or queue.

A third and better option now exists, templates. Templates can be used to define classes or
functions. The code below specifies a stack class (Stroustrup [1] p. 256):

t enpl at e<cl ass T>
class stack {

T *v;

T *p;

i nt SzZ;
publi c:

stack(int s) { v = p = new T[sz=s]; }
~stack() { delete[] v; }

void push(T a) { *p++ = a; }
T pop() { return *--p; }

int size() const { return p-v; }

44 April 1994

19.3/1

Programming in C++

We can then use this template to declare stacks of whatever we want:

st ack<shape *> ssp(200); /1l stack of pointers to shapes
st ack<i nt > si (400); /] stack of integers

Note that we have to specify the type of the object to store in the stack in angle brackets.
The type name we use there is used by the template as a replacement for T in the template
above.

Whilst we have lost the ahility to store different objects in the stack (though derived classes
are still acceptable), we have not lost the careful type checking of parameters that both of
the first two methods suffer from.

As stated above, templates can be used when writing generic functions, for example, a
function that swaps two values of the same type:

#i ncl ude <i ostream h>
tenpl ate<cl ass T> void swap(T& a, T& b) {
T t;
t = a
a = b;
b =t;
}
voi d main()
{
doubl e x =1.0, vy =2.0;
i nt i =5,] =6
cout << i <<' ' << j <<' ' &< X <" ' <<y << endl;
swap(X, y);
swap(i,j); _
cout << i << ' ' &< j <«<' ' &< X <" ' <<y << endl;
}
4 Exceptions

April 1994

Exceptions are a method of dealing with run-time errors. It is not always possible for
functions to return an error value (e.g. afunction that popsani nt value from a stack, all
possible return values are valid, there is no special vaue that can be used to indicate an
error condition), and even if they can, it is awkward to aways check the return value.
Exceptions offer an aternative method of handling errors.

Exceptions are very new to C++, and there are not many compilers that support them.

Exceptions are thrown when errors occur; they can then be caught and appropriate action
taken. Exceptions can only be detected inside t ry blocks, and can only be handled or
caught inside cat ch blocks. The following program throws an error if the buffer cannot
be dlocated. The exception is caught and the program terminated after printing a suitable
error message.

45 oucCs

Programming in C++ 19.3/1

#i ncl ude <i ostream h>
int main()
try {
Ehar *puffer = new char[size];

if (buffer == 0)
throw "Qut of nenory"

catch (const char *str) {
cerr << "Exception: " << str << endl;
exit(1);

}

Thereisno need for the exception to t hr ow a string (asin this example), in fact objects of
any type can be thrown.

5 Separate Compilation

oucCs

One of C and C++'s advantages is the separate compilation of groups of functions. There
are afew rules of thumb that help this process.

Consider the definition of a class, e.g. a stack. If it is intended to compile the class
separately so that it can be linked into whatever programs require it, then the following
makes life easier:

— Bveay sourcefile that uses or defines any of the methods of stack (so this includes both
thefilethat uses a stack and the file in which the methods are defined) needs to know
what the class looks like. This means that they must all include the declaration of the
stack class. This can be solved by putting the declaration in a header file and including
it (with #i ncl ude) in any source file that refers to stack.

— Asthere can only be one declaration of a stack in any one source file, prevent multiple
including of the header file by defining a preprocessor constant. Only if this constant
has not been defined are the contents of the header file used.

— Put the non-inline methods of stack in a separate source file (remembering to
#i ncl ude the declaration of stack) and compile it to an object file.

— Compile the program that uses a stack, but when it comes to linking link in the object
file produced above.

46 April 1994

19.3/1 Programming in C++

stack.h

#i fndef __ STACK _
#define __ STACK _

#i ncl ude <obj ect. h>

class stack {
bj ect **data; // a pointer to a pointer to an Object
/1

i nt ptr; pointer to next free |ocation
publi c:

/1 in-line constructor

st ack()

data = new Obj ect*[100];
/1l create an array of 100 pointers to Cbject

ptr = 0;
/1l ptr points to first free elenent in array

}

/1 in-line destructor
~st ack()

delete [] data;

/! declarations for push, pop & i sSEnpty
voi d push(Object*);
Qbj ect *pop();
int iseEmpty();
1

#endi f

stack.cpp

#i ncl ude "stack.h"”
voi d stack:: push(Object *obj)

data[ptr++] = obj;

Obj ect *stack: : pop()

{
return data[--ptr];
}
int stack::isEnmpty()
{
return ptr == 0;
}

April 1994 a7 ouUcs

Programming in C++ 19.3/1

usestack.cpp

#i ncl ude "stack. h"
#i ncl ude <strng. h>

int main()
stack S;
String strl("hello"),str2("world");

s. push(&strl);
s. push(&str2);

while(!s.isEnmpty())
cout << *s.pop();

return O;

}

To compile the stack class separately using a command line compiler, type:
cc -c stack.cpp

Where cc isyour C++ compiler (e.g. bcc, t cc, gcc etc.).

To compile the program that uses a stack using a command line compiler, type:
cc usestack.cpp stack.obj tclasss.lib

If you are using the Turbo or Borland C++ IDE (Integrated Development Environment) then
create a project file that includes the following files:

usest ack. cpp
st ack. obj
tclasss.lib

Or replace st ack. obj with st ack. cpp if it is likely that the file st ack. cpp or
st ack. h will change.

Notice dso that as both st ack. cpp and usest ack. cpp include the same header file, if
the class declaration is ever changed both will automatically pick up the same new version.

oucs 48 April 1994

19.3/1

Programming in C++

6 C++ Versions

Thereisnot yet an ANSI or SO standard for C++ (but it is being worked on!). C++isan
evolving language, so some of the features described in this guide may not be available on
all C++ compilers. C++ started life at AT& T using a C++ to C trandator caled cfront.
AT&T (actudly Unix Systems Laboratories now) still sell cfront, and people often refer to
the different versions of cfront when talking about new language features. The following
description of cfront versons comes from the C++ Frequently Asked Questions (FAQ) list
posted to the USENET news group comp.lang.c++:

12 as described in the first edition of Stroustrup's The C++ Programming
Language

20 multiplefvirtual inheritance and pure virtual functions

21 semi-nested classesand del et e []

3.0 fully nested classes, templates and syntax to define prefix and postfix
increment and decrement operators

4.0(?) will include exceptions

Borland C++ 4.0 does support exceptions. The Borland Turbo C++ 3.1 compiler used in
classisroughly equivalent to cfront 3.0.

7 Bibliography

April 1994

Books used in the development of this course, and in teaching myself C++ were:

Bjarne Stroustrup: The C++ Programming Language, Second Edition, Addison-Wedey
1992, £24.95.
One of the two main C++ references (the other is the Annotated C++ Reference
Manual or ARM). Extremely useful, but not redly atutoria text.

Robert Lafore: Object—Oriented Programming In Turbo C++, Waite Group Press 1991,
£26.95.
Fast becoming afavourite of mine.

Scott Meyers. Effective C++, Addison-Wedey 1992, £20.95.
Useful collection of hints and tips.

Scott Robert Ladd: C++ Techniques and Applications, M& T Books 1990, £19.95.
Some very ussful information, but not as good (in my view) an introduction as Lafore.

Cay S. Horstmann: Mastering C++, An Introduction to C++ and Object—Oriented
Programming For C and Pascal Programmers, John Wiley 1991, £21.50
Small, light, extremely informative, but only redly if you know C quite well.

Entsminger & Eckel: The Tao of Objects, M& T 1991, £19.95
| persondly found this a “right rivetting read”. It has examples in Turbo Pascal and
C++, and covers al sorts in interesting aspects of the design of Object Oriented
programs.

49 oucCs

